
PEPT Documentation
Release 0.5.2

PEPT maintainers

Apr 24, 2023





DOCUMENTATION

1 Positron Emission Particle Tracking 3

2 Tutorials and Documentation 5

3 Performance 7

4 Copyright 9

5 Indices and tables 11
5.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.4 Contributing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
5.5 Citing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Bibliography 239

Python Module Index 241

Index 243

i



ii



PEPT Documentation, Release 0.5.2

A Python library that unifies Positron Emission Particle Tracking (PEPT) research, including tracking, simulation, data
analysis and visualisation tools.

DOCUMENTATION 1



PEPT Documentation, Release 0.5.2

2 DOCUMENTATION



CHAPTER

ONE

POSITRON EMISSION PARTICLE TRACKING

PEPT is a technique developed at the University of Birmingham which allows the non-invasive, three-dimensional
tracking of one or more ‘tracer’ particles through particulate, fluid or multiphase systems. The technique allows particle
or fluid motion to be tracked with sub-millimetre accuracy and sub-millisecond temporal resolution and, due to its use
of highly-penetrating 511keV gamma rays, can be used to probe the internal dynamics of even large, dense, optically
opaque systems - making it ideal for industrial as well as scientific applications.

PEPT is performed by radioactively labelling a particle with a positron- emitting radioisotope such as fluorine-18 (18F)
or gallium-68 (68Ga), and using the back-to-back gamma rays produced by electron-positron annihilation events in and
around the tracer to triangulate its spatial position. Each detected gamma ray represents a line of response (LoR).

Transforming gamma rays, or lines of response (left) into individual tracer trajectories (right) using the pept library.
Depicted is experimental data of two tracers rotating at 42 RPM, imaged using the University of Birmingham Positron
Imaging Centre’s parallel screens PEPT camera.

3



PEPT Documentation, Release 0.5.2

4 Chapter 1. Positron Emission Particle Tracking



CHAPTER

TWO

TUTORIALS AND DOCUMENTATION

A very fast-paced introduction to Python is available here (Google Colab tutorial link); it is aimed at engineers whose
background might be a few lines written MATLAB, as well as moderate C/C++ programmers.

A beginner-friendly tutorial for using the pept package is available here (Google Colab link).

The links above point to Google Colaboratory, a Jupyter notebook-hosting website that lets you combine text with
Python code, executing it on Google servers. Pretty neat, isn’t it?

5

https://colab.research.google.com/drive/1Uq8Ppiv8jR-XSVsKZMcCUNuXW-l6n_RI?usp=sharing
https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO


PEPT Documentation, Release 0.5.2

6 Chapter 2. Tutorials and Documentation



CHAPTER

THREE

PERFORMANCE

Significant effort has been put into making the algorithms in this package as fast as possible. Most computation-
ally intensive code has been implemented in Cython, C or C++ and allows policy-based parallel execution, ei-
ther on shared-memory machines using joblib / ThreadPoolExecutor, or on distributed computing clusters using
mpi4py.futures.MPIPoolExecutor.

7



PEPT Documentation, Release 0.5.2

8 Chapter 3. Performance



CHAPTER

FOUR

COPYRIGHT

Copyright (C) 2021 the pept developers. Until now, this library was built directly or indirectly through the brain-time
of:

• Andrei Leonard Nicusan (University of Birmingham)

• Dr. Kit Windows-Yule (University of Birmingham)

• Dr. Sam Manger (University of Birmingham)

• Matthew Herald (University of Birmingham)

• Chris Jones (University of Birmingham)

• Mark Al-Shemmeri (University of Birmingham)

• Prof. David Parker (University of Birmingham)

• Dr. Antoine Renaud (University of Edinburgh)

• Dr. Cody Wiggins (Virginia Commonwealth University)

• Dawid Michał Hampel

• Dr. Tom Leadbeater

Thank you.

9



PEPT Documentation, Release 0.5.2

10 Chapter 4. Copyright



CHAPTER

FIVE

INDICES AND TABLES

5.1 Getting Started

These instructions will help you get started with PEPT data analysis.

5.1.1 Prerequisites

This package supports Python 3.6 and above - it is built and tested for Python 3.6, 3.7 and 3.8 on Windows, Linux and
macOS (thanks to conda-forge, which is awesome!).

You can install it using the batteries-included Anaconda distribution or the bare-bones Python interpreter. You can also
check out our Python and pept tutorials.

5.1.2 Installation

The easiest and quickest installation, if you are using Anaconda:

conda install -c conda-forge pept

You can also install the latest release version of pept from PyPI:

pip install --upgrade pept

Or you can install the development version from the GitHub repository:

pip install -U git+https://github.com/uob-positron-imaging-centre/pept

5.2 Tutorials

The main purpose of the PEPT library is to provide a common, consistent foundation for PEPT-related algorithms,
including tracer tracking, visualisation and post-processing tools - such that they can be used interchangeably, mixed
and matched for any PEPT camera and system. Virtually all PEPT processing routine follows these steps:

1. Convert raw gamma camera / scanner data into 3D lines (i.e. the captured gamma rays, or lines of response -
LoRs).

2. Take a sample of lines, locate tracer locations, then repeat for the next samples.

3. Separate out individual tracer trajectories.

11

https://conda-forge.org/
https://www.anaconda.com/products/individual
https://www.python.org/downloads/
https://github.com/uob-positron-imaging-centre/tutorials


PEPT Documentation, Release 0.5.2

4. Visualise and post-process trajectories.

For these algorithm-agnostic steps, PEPT provides five base data structures upon which the rest of the library is built:

1. pept.LineData: general 3D line samples, formatted as [time, x1, y1, z1, x2, y2, z2, extra. . . ].

2. pept.PointData: general 3D point samples, formatted as [time, x, y, z, extra. . . ].

3. pept.Pixels: single 2D pixellised space with physical dimensions, including fast line traversal.

4. pept.Voxels: single 3D voxellised space with physical dimensions, including fast line traversal.

For example, once you convert your PEPT data - from any scanner - into pept.LineData, all the algorithms in this
library can be used.

All the data structures above are built on top of NumPy and integrate natively with the rest of the Python / SciPy
ecosystem. The rest of the PEPT library is organised into submodules:

1. pept.scanners: converters between native scanner data and the base data structures.

2. pept.tracking: radioactive tracer tracking algorithms, e.g. the Birmingham method, PEPT-ML, FPI.

3. pept.plots: PEPT data visualisation subroutines.

4. pept.utilities: general-purpose helpers, e.g. read_csv, traverse3d.

5. pept.processing: PEPT-oriented post-processing algorithms, e.g. VectorField3D.

If you are new to the PEPT library, we recommend going through this interactive online notebook, which introduces
all the fundamental concepts of the library:

https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=
sharing

Once you get the idea of LineData samples, Pipeline and PlotlyGrapher, you can use these copy-pastable tutorials
to build PEPT data analysis pipelines tailored to your specific systems.

5.2.1 Absolute Basics

The main purpose of the pept library is to provide a common, consistent foundation for PEPT-related algorithms,
including tracer tracking, visualisation and post-processing tools - such that they can be used interchangeably, mixed
and matched for different systems. Virtually any PEPT processing routine follows these steps:

1. Convert raw gamma camera / scanner data into 3D lines (i.e. the captured gamma rays, or lines of response -
LoRs).

2. Take a sample of lines, locate tracer locations, then repeat for the next samples.

3. Separate out individual tracer trajectories.

4. Visualise and post-process trajectories.

For these algorithm-agnostic steps, pept provides five base data structures upon which the rest of the library is built:

1. pept.LineData: general 3D line samples, formatted as [time, x1, y1, z1, x2, y2, z2, extra. . . ].

2. pept.PointData: general 3D point samples, formatted as [time, x, y, z, extra. . . ].

3. pept.Pixels: single 2D pixellised space with physical dimensions, including fast line traversal.

4. pept.Voxels: single 3D voxellised space with physical dimensions, including fast line traversal.

All the data structures above are built on top of NumPy and integrate natively with the rest of the Python / SciPy
ecosystem. The rest of the pept library is organised into submodules:

12 Chapter 5. Indices and tables

https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=sharing
https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=sharing
https://pept.readthedocs.io/en/latest/manual/generated/pept.LineData.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.PointData.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.Pixels.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.Voxels.html


PEPT Documentation, Release 0.5.2

• pept.scanners: converters between native scanner data and the base classes.

• pept.tracking: radioactive tracer tracking algorithms, e.g. the Birmingham method, PEPT-ML, FPI.

• pept.plots: PEPT data visualisation subroutines.

• pept.utilities: general-purpose helpers, e.g. read_csv, traverse3d.

• pept.processing: PEPT-oriented post-processing algorithms, e.g. occupancy2d.

pept.LineData

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each defined by two points, regardless of the geometry
of the scanner used. This class is used to wrap LoRs (or any lines!), efficiently yielding samples of lines of an adaptive
sample_size and overlap.

It is an abstraction over PET / PEPT scanner geometries and data formats, as once the raw LoRs (be they stored as binary,
ASCII, etc.) are transformed into the common LineData format, any tracking, analysis or visualisation algorithm in
the pept package can be used interchangeably. Moreover, it provides a stable, user-friendly interface for iterating over
LoRs in samples - this is useful for tracking algorithms, as they generally take a few LoRs (a sample), produce a tracer
position, then move to the next sample of LoRs, repeating the procedure. Using overlapping samples is also useful for
improving the tracking rate of the algorithms.

Here are some basic examples of creating and using LineData samples - you’re very much invited to copy and run
them!

Initialise a LineData instance containing 10 lines with a sample_size of 3.

>>> import pept
>>> import numpy as np
>>> lines_raw = np.arange(70).reshape(10, 7)
>>> print(lines_raw)
[[ 0 1 2 3 4 5 6]
[ 7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
[49 50 51 52 53 54 55]
[56 57 58 59 60 61 62]
[63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data
pept.LineData (samples: 3)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 10, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
...
[56. 57. ... 61. 62.]
[63. 64. ... 68. 69.]]

(continues on next page)

5.2. Tutorials 13

https://pept.readthedocs.io/en/latest/manual/scanners.html
https://pept.readthedocs.io/en/latest/manual/tracking.html
https://pept.readthedocs.io/en/latest/manual/plots.html
https://pept.readthedocs.io/en/latest/manual/utilities.html
https://pept.readthedocs.io/en/latest/manual/processing.html


PEPT Documentation, Release 0.5.2

(continued from previous page)

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

>>> line_data[0]
pept.LineData (samples: 1)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
[35. 36. ... 40. 41.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

5.2.2 Saving / Loading Data

All PEPT objects can be saved in an efficient binary format using pept.save and pept.load:

import pept
import numpy as np

# Create some dummy data
lines_raw = np.arange(70).reshape((10, 7)
lines = pept.LineData(lines_raw)

(continues on next page)

14 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

# Save data
pept.save("data.pickle", lines)

# Load data
lines_loaded = pept.load("data.pickle")

The binary approach has the advantage of preserving all your metadata saved in the object instances - e.g. columns,
sample_size - allowing the full state to be reloaded.

Matrix-like data like pept.LineData and pept.PointData can also be saved in a slower, but human-readable CSV
format using their class methods .to_csv; such tabular data can then be reinitialised using pept.read_csv:

# Save data in CSV format
lines.to_csv("data.csv")

# Load data back - *this will be a simple NumPy array!*
lines_raw = pept.read_csv("data.csv")

# Need to put the array back into a `pept.LineData`
lines = pept.LineData(lines_raw)

5.2.3 Plotting

Interactive 3D Plots

The easiest method of plotting 3D PEPT-like data is using the pept.plots.PlotlyGrapher interactive grapher:

# Plotting some example 3D lines
import pept
from pept.plots import PlotlyGrapher
import numpy as np

lines_raw = np.arange(70).reshape((10, 7))
lines = pept.LineData(lines_raw)

PlotlyGrapher().add_lines(lines).show()

# Plotting some example 3D points
import pept
from pept.plots import PlotlyGrapher
import numpy as np

points_raw = np.arange(40).reshape((10, 4))
points = pept.PointData(points_raw)

PlotlyGrapher().add_points(points).show()

The PlotlyGrapher object allows straightforward subplots creation:

# Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(cols = 2)

(continues on next page)

5.2. Tutorials 15



PEPT Documentation, Release 0.5.2

(continued from previous page)

grapher.add_lines(lines) # col = 1 by default
grapher.add_points(points, col = 2)

grapher.show()

# Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(rows = 2, cols = 2)

grapher.add_lines(lines, col = 2) # row = 1 by default
grapher.add_points(points, row = 2, col = 2)

grapher.show()

Adding Colourbars

By default, the last column of a dataset is used to colour-code the resulting points:

from pept.plots import PlotlyGrapher
PlotlyGrapher().add_points(point_data).show() # Colour-codes by the last column

You can change the column used to colour-code points using a numeric index (e.g. first column colorbar_col = 0,
second to last column colorbar_col = -2) or named column (e.g. colorbar_col = "error"):

PlotlyGrapher().add_points(point_data, colorbar_col = -2).show()
PlotlyGrapher().add_points(point_data, colorbar_col = "label").show() # Coloured by␣
→˓trajectory
PlotlyGrapher().add_points(point_data, colorbar_col = "v").show() # Coloured by␣
→˓velocity

As a PlotlyGrapher will often manage multiple subplots, one shouldn’t include explicit colourbars on the sides for
each dataset plotted. Therefore, colourbars are hidden by default; add a colourbar by setting its title:

PlotlyGrapher().add_points(points, colorbar_title = "Velocity").show()

Histogram of Tracking Errors

The Centroids(error = True) filter appends a column “error” representing the relative error in the tracked position.
You can select a named column via indexing, e.g. trajectories["error"]; you can then plot a histogram of the
relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories["cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

# Or simply append the `Condition` to the `pept.Pipeline`
(continues on next page)

16 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

pipeline = pept.Pipeline([
...
Condition("cluster_size > 30, error < 20"),
...

])

Exporting Plotly Graphs as Images

The standard output of the Plotly grapher is an interactive HTML webpage; however, this can lead to large file sizes or
memory overflows. Plotly allows for graphs to be exported as images to alleviate some of these issues.

Ensure you have imported:

import plotly.express as px
import kaleido
import plotly.io as pio

There are two main ways of exporting as images:

# Save the inner plotly.Figure attribute of a `grapher`
# Format can be changed to other image formats
# Width and height can be adjusted to give the desired image size
grapher.fig.write_image("figure.png", width=2560, height=1440)

Modifying the Underlying Figure

You can access the Plotly figure wrapped and managed by a PlotlyGrapher using the .fig attribute:

grapher.fig.update_layout(xaxis_title = "Pipe Length (mm)")

5.2.4 Initialising PEPT Scanner Data

The pept.scanners submodule contains converters between scanner specific data formats (e.g. parallel screens /
ASCII, modular camera / binary) and the pept base classes, allowing simple initialisation of pept.LineData from
different sources.

ADAC Forte

The parallel screens detector used at Birmingham can output binary list-mode data, which can be converted using
pept.scanners.adac_forte(binary_file):

import pept

lines = pept.scanners.adac_forte("binary_file.da01")

If you have multiple files from the same experiment, e.g. “data.da01”, “data.da02”, etc., you can stitch them all together
using a glob, “data.da*”:

5.2. Tutorials 17



PEPT Documentation, Release 0.5.2

import pept

# Multiple files starting with `binary_file.da`
lines = pept.scanners.adac_forte("binary_file.da*")

Parallel Screens

If you have your data as a CSV containing 5 columns [t, x1, y1, x2, y2] representing the coordinates of the two points
defining an LoR on two parallel screens, you can use pept.scanners.parallel_screens to insert the missing
coordinates and get the LoRs into the general LineData format [t, x1, y1, z1, x2, y2, z2]:

import pept

screen_separation = 500
lines = pept.scanners.parallel_screens(csv_or_array, screen_separation)

Modular Camera

Your modular camera data can be initialised using pept.scanners.modular_camera:

import pept

lines = pept.scanners.modular_camera(filepath)

5.2.5 Adaptive Sampling

Perhaps the most important decision a PEPT user must make is how the LoRs are divided into samples. The two most
common approaches are:

Fixed sample size: a constant number of elements per sample, with potential overlap between samples.

• Advantages: effectively adapts spatio-temporal resolution, with higher accuracy in more active PEPT scanner
regions.

• Disadvantages: when a tracer exits the field of view, the last LoRs will be joined with the first LoRs when the
tracer re-enters the scanner in the same samples.

Fixed time window: a constant time interval in which LoRs are aggregated, with potential overlap.

• Advantages: robust to tracers moving out of the field of view.

• Disadvantages: non-adaptive temporal resolution.

The two approaches can be combined into a single pept.AdaptiveWindow, which works as a fixed time window,
except when more LoRs are encountered than a given limit, in which case the time window is shrunk - hence adapting
the time window depending on how many LoRs are intercepted in a given window.

import pept

# A time window of 5 ms shrinking when encountering more than 200 LoRs
lors = pept.LineData(..., sample_size = pept.AdaptiveWindow(5.0, 200))

# A time window of 12 ms with the number of LoRs capped at 400 LoRs and an overlap of 6␣
(continues on next page)

18 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

→˓ms
lors = pept.scanners.adac_forte(

...,
sample_size = pept.AdaptiveWindow(12., 200),
overlap = pept.AdaptiveWindow(6.),

)

Moreover, if an ideal number of LoRs is selected, there exists an optimum time window for which most samples will
have roughly this ideal number of LoRs, except when the tracer is out of the field of view, or it’s static. This can be
automatically selected using pept.tracking.OptimizeWindow:

import pept
import pept.tracking as pt

# Find an adaptive time window that is ideal for about 200 LoRs per sample
lors = pept.LineData(...)
lors = pt.OptimizeWindow(ideal_elems = 200).fit(lors)

OptimizeWindow can be used at the start of a pipeline; an optional overlap parameter can be used to define an overlap
as a ratio to the ideal time window found. For example, if the ideal time window found is 100 ms, an overlap of 0.5
will result in an overlapping time interval of 50 ms:

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
OptimizeWindow(200),
BirminghamMethod(fopt = 0.5),
Stack(),

])

locations = pipeline.fit(lors)

5.2.6 The Birmingham Method

The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.

If you are using it in your research, you are kindly asked to cite the following paper:

Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron emission particle tracking-a
technique for studying flow within engineering equipment. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1993 Mar
10;326(3):592-607.

5.2. Tutorials 19



PEPT Documentation, Release 0.5.2

Birmingham Method recipe

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Stack(),

])

locations = pipeline.fit(lors)

Recipe with Trajectory Separation

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Segregate(window = 20, cut_distance = 10),
Stack(),

])

locations = pipeline.fit(lors)

5.2.7 PEPT-ML

PEPT using Machine Learning is a modern clustering-based tracking method that was developed specifically for noisy,
fast applications.

If you are using PEPT-ML in your research, you are kindly asked to cite the following paper:

Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of
Scientific Instruments. 2020 Jan 1;91(1):013329.

PEPT-ML one pass of clustering recipe

The LoRs are first converted into Cutpoints, which are then assigned cluster labels using HDBSCAN; the cutpoints are
then grouped into clusters using SplitLabels and the clusters’ Centroids are taken as the particle locations. Finally,
stack all centroids into a single PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Cutpoints(max_distance = 0.5),
HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),

(continues on next page)

20 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(),
])

locations = pipeline.fit(lors)

PEPT-ML second pass of clustering recipe

The particle locations will always have a bit of scatter to them; we can tighten those points into accurate, dense trajec-
tories using a second pass of clustering.

Set a very small sample size and maximum overlap to minimise temporal smoothing effects, then recluster the tracer
locations, split according to cluster label, compute centroids, and stack into a final PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),
Stack(),

])

locations2 = pipeline.fit(lors)

PEPT-ML complete recipe

Including two passes of clustering and trajectory separation: Including an example ADAC Forte data initisalisation,
two passes of clustering, trajectory separation, plotting and saving trajectories as CSV.

# Import what we need from the `pept` library
import pept
from pept.tracking import *
from pept.plots import PlotlyGrapher, PlotlyGrapher2D

# Open interactive plots in the web browser
import plotly
plotly.io.renderers.default = "browser"

# Initialise data from file and set sample size and overlap
filepath = "DS1.da01"
max_tracers = 1

lors = pept.scanners.adac_forte(
filepath,
sample_size = 200 * max_tracers,

(continues on next page)

5.2. Tutorials 21



PEPT Documentation, Release 0.5.2

(continued from previous page)

overlap = 150 * max_tracers,
)

# Select only the first 1000 samples of LoRs for testing; comment out for all
lors = lors[:1000]

# Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

# First pass of clustering
Cutpoints(max_distance = 0.2),
HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),

# Second pass of clustering
Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
SplitLabels() + Centroids(),

# Trajectory separation
Segregate(window = 20 * max_tracers, cut_distance = 10),
Stack(),

])

# Process all samples in `lors` in parallel, using `max_workers` threads
trajectories = pipeline.fit(lors)

# Save trajectories as CSV
trajectories.to_csv(filepath + ".csv")

# Save as a fast binary; you can load them back with `pept.load("path")`
trajectories.save(filepath + ".pickle")

# Plot trajectories - first a 2D timeseries, then all 3D positions
PlotlyGrapher2D().add_timeseries(trajectories).show()
PlotlyGrapher().add_points(trajectories).show()

22 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Example of a Complex Processing Pipeline

This is an example of “production code” used for tracking tracers in pipe flow imaging, where particles enter and leave
the field of view regularly. This pipeline automatically:

• Sets an optimum adaptive time window.

• Runs a first pass of clustering, keeping track of the number of LoRs around the tracers (cluster_size) and
relative location error (error).

• Removes locations with too few LoRs or large errors.

• Sets a new optimum adaptive time window for a second pass of clustering.

• Removes spurious points while the tracer is out of the field of view.

• Separates out different tracer trajectories, removes the ones with too few points and groups them by trajectory.

• Computes the tracer velocity at each location on each trajectory.

• Removes locations at the edges of the detectors.

Each individual step could be an entire program on its own; with the PEPT Pipeline architecture, they can be chained
in 17 lines of Python code, automatically using all processors available on parallelisable sections.

# Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

OptimizeWindow(200, overlap = 0.5) + Debug(1),

# First pass of clustering
Cutpoints(max_distance = 0.2),
HDBSCAN(true_fraction = 0.15),
SplitLabels() + Centroids(cluster_size = True, error = True),

# Remove erroneous points
Condition("cluster_size > 30, error < 20"),

# Second pass of clustering
OptimizeWindow(30, overlap = 0.95) + Debug(1),
HDBSCAN(true_fraction = 0.6),
SplitLabels() + Centroids(),

# Remove sparse points in time
OutOfViewFilter(200.),

# Trajectory separation
Segregate(window = 20, cut_distance = 20, min_trajectory_size = 20),
Condition("label >= 0"),
GroupBy("label"),

# Velocity computation
Velocity(11),
Velocity(11, absolute = True),

# Cutoff points outside this region
Condition("y > 100, y < 500"),

(continues on next page)

5.2. Tutorials 23



PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(),
])

5.2.8 Feature Point Identification

FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers in fast
and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe flows at the Virginia Commonwealth University.
If you use this algorithm in your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle track-
ing with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment. 2017 Jan 21; 843:22-8.

FPI Recipe

As FPI works on voxelized representations of the LoRs, the Voxelize filter is first used before FPI itself:

import pept
from pept.tracking import *

resolution = (100, 100, 100)

pipeline = pept.Pipeline([
Voxelize(resolution),
FPI(w = 3, r = 0.4),
Stack(),

])

locations = pipeline.fit(lors)

5.2.9 Tracking Errors

When processing more difficult datasets - scattering environments, low tracer activities, etc. - it is often useful to use
some tracer statistics to remove erroneous locations.

Most PEPT algorithms will include some measure of the tracer location errors, for example:

• The Centroids(error = True) filter appends a column “error” representing the standard deviation of the
distances from the computed centroid to the constituent points. For a 500 mm scanner, a spread in a tracer
location of 100 mm is clearly an erroneous point.

• The Centroids(cluster_size = True) filter appends a column “cluster_size” representing the number of
points used to compute the centroid. If a sample of 200 LoRs yields a tracer location computed from 5 points, it
is clearly noise.

• The BirminghamMethod filter includes a column “error” representing the standard deviation of the distances
from the tracer position to the constituent LoRs.

24 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Histogram of Tracking Errors

You can select a named column via string indexing, e.g. trajectories["error"]; you can then plot a histogram of
the relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories["cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

# Or simply append the `Condition` to the `pept.Pipeline`
pipeline = pept.Pipeline([

...
Condition("cluster_size > 30, error < 20"),
...

])

5.2.10 Trajectory Separation

Segregate Points

We can separate out trajectory segments / points that are spatio-temporally far away to:

1. Remove spurious, noisy points.

2. Separate out continuous trajectory segments.

The spatio-temporal metric differentiates between points that may be in the same location at different times. This is
achieved by allowing points to be connected in a sliding window approach.

The pept.tracking.Segregate algorithm works by creating a Minimum Spanning Tree (MST, or minimum distance
path) connecting all points in a dataset, then cutting all paths longer than a cut_distance. All distinct segments are
assigned a trajectory 'label' (integer starting from 0); trajectories with fewer than min_trajectory_size points
are considered noise (label -1).

from pept.tracking import *

trajectories = Segregate(window = 20, cut_distance = 10.).fit(trajectories)

Consider all trajectories with fewer than 50 points to be noise:

segr = Segregate(
window = 20,
cut_distance = 10.,
min_trajectory_size = 50,

)

trajectories = segr.fit(trajectories)

This step adds a new column “label”. We can group each individual trajectory into a list with GroupBy:

5.2. Tutorials 25



PEPT Documentation, Release 0.5.2

traj_list = GroupBy("label").fit(trajectories)
traj_list[0] # First trajectory

[New in pept-0.5.2] Only connect points within a time interval; in other words, disconnect into different trajectories
points whose timestamps are further apart than max_time_interval:

segr = Segregate(
window = 20,
cut_distance = 10.,
min_trajectory_size = 50,
max_time_interval = 2000, # Disconnect tracer with >2s gap

)

trajectories = segr.fit(trajectories)

5.2.11 Filtering Data

There are many filters in pept.tracking, you can check out the Manual at the top of the page for a complete list.
Here are examples with the most important ones.

Remove

Simply remove a column:

from pept.tracking import *

trajectories = Remove("label").fit(trajectories)

Or multiple columns:

trajectories = Remove("label", "error").fit(trajectories)

Condition

One of the most important filters, selecting only data that satisfies a condition:

from pept.tracking import *

trajectories = Condition("error < 15").fit(trajectories)

Or multiple ones:

trajectories = Condition("error < 15, label >= 0").fit(trajectories)

In the simplest case, you just use the column name as the first argument followed by a comparison. If the column
name is not the first argument, you must use single quotes:

trajectories = Condition("0 <= 'label'").fit(trajectories)

You can also use filtering functions from NumPy in the condition string (i.e. anything returning a boolean mask):

26 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

# Remove all NaNs and Infs from the 'x' column
trajectories = Condition("np.isfinite('x')")

Finally, you can supply your own function receiving a NumPy array of the data and returning a boolean mask:

def last_column_filter(data):
return data[:, -1] > 10

trajectories = Condition(last_column_filter).fit(trajectories)

Or using inline functions (i.e. lambda):

# Select points within a vertical cylinder with radius 10
trajectories = Condition(lambda x: x[:, 1]**2 + x[:, 3]**2 < 10**2).fit(trajectories)

SamplesCondition

While Condition is applied on individual points, we could filter entire samples - for example, select only trajectories
with more than 30 points:

import pept.tracking as pt

long_trajectories_filter = pept.Pipeline([
# Segregate points - appends "label" column
pt.Segregate(window = 20, cut_distance = 10),

# Group points into samples; e.g. sample 1 contains all points with label 1
pt.GroupBy("label"),

# Now each sample is an entire trajectory which we can filter
pt.SamplesCondition("sample_size > 30"),

# And stack all remaining samples back into a single PointData
pt.Stack(),

])

long_trajectories = long_trajectories_filter.fit(trajectories)

The condition can be based on the sample itself, e.g. keep only samples that lie completely beyond x=0:

# Keep only samples for which all points' X coordinates are bigger than 0
Condition("np.all(sample['x'] > 0)")

5.2. Tutorials 27



PEPT Documentation, Release 0.5.2

GroupBy

Stack all samples (i.e. LineData or PointData) and split them into a list according to a named / numeric column
index:

from pept.tracking import *

group_list = GroupBy("label").fit(trajectories)

RemoveStatic

Remove tracer locations when it spends more than time_window without moving more than max_distance:

from pept.tracking import *

# Remove positions that spent more than 2 seconds without moving more than 20 mm
nonstatic = RemoveStatic(time_window = 2000, max_distance = 20).fit(trajectories)

5.2.12 Extracting Velocities

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to
sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often
in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular
timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label,
then Interpolate into regular timesteps, then compute each point’s Velocity (dimension-wise or absolute) and
finally Stack them back into a PointData:

from pept.tracking import *

pipe_vel = pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy("label"),
Interpolate(timestep = 5.),
Velocity(window = 7),
Stack(),

])

trajectories = pipe_vel.fit(trajectories)

The Velocity step appends columns ["vx", "vy", "vz"] (default) or ["v"] (if absolute = True). You can
add both if you wish:

from pept.tracking import *

pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy("label"),
Interpolate(timestep = 5.),
Velocity(window = 7), # Appends vx, vy, vz
Velocity(window = 7, absolute = True), # Appends v

(continues on next page)

28 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(),
])

5.2.13 Interpolating Timesteps

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to
sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often
in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular
timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label,
then Interpolate into regular timesteps and finally Stack them back into a PointData:

from pept.tracking import *

pipe = pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy("label"),
Interpolate(timestep = 5.),
Stack(),

])

trajectories = pipe.fit(trajectories)

5.3 Manual

All public pept subroutines are fully documented here, along with copy-pastable examples. The base functionality is
summarised below; the rest of the library is organised into submodules, which you can access on the left. You can also
use the Search bar in the top left to go directly to what you need.

We really appreciate all help with writing useful documentation; if you feel something can be improved, or would like
to share some example code, by all means get in contact with us - or be a superhero and click Edit this page on the right
and submit your changes to the GitHub repository directly!

5.3.1 Base Functions

pept.read_csv(filepath_or_buffer[, ...]) Read a given number of lines from a file and return a
numpy array of the values.

pept.load(filepath) Load a binary saved / pickled object from filepath.
pept.save(filepath, obj) Save an object obj instance as a binary file at filepath.

5.3. Manual 29



PEPT Documentation, Release 0.5.2

pept.read_csv

pept.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None,
engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

Read a given number of lines from a file and return a numpy array of the values.

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it reads from a space-separated values file at filepath_or_buffer, optionally skipping skiprows
lines and reading in nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer

[str, path object or file-like object] Any valid string path is acceptable. The string
could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host
is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a
path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a
read() method, such as a file handler (e.g. via builtin open function) or StringIO.

skiprows
[list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number of lines
to skip (int) at the start of the file.

nrows
[int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype
[Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep
[str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header
[int, list of int, “infer”, optional] Row number(s) to use as the column names, and the
start of the data. By default assume there is no header present (i.e. header = None).

engine
[{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the python
engine is currently more feature-complete.

na_filter
[bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting
[int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting be-
havior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map
[bool, default True] If a filepath is provided for filepath_or_buffer, map the file object

30 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

directly onto memory and access the data directly from there. Using this option can improve
performance because there is no longer any I/O overhead.

**kwargs
[optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.load

pept.load(filepath)
Load a binary saved / pickled object from filepath.

Most often the full object state was saved using the pept.save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
object

The loaded Python object instance (e.g. pept.LineData).

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

pept.save

pept.save(filepath, obj)
Save an object obj instance as a binary file at filepath.

Saves the full object state, including e.g. the inner .lines NumPy array, sample_size, etc. in a fast, portable binary
format. Load back the object using the pept.load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

obj
[object] Any - tipically PEPT-oriented - object to be saved in the binary pickle format.

5.3. Manual 31

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

5.3.2 Base Classes

pept.LineData(lines[, sample_size, overlap, ...]) A class for PEPT LoR data iteration, manipulation and
visualisation.

pept.PointData(points[, sample_size, ...]) A class for general PEPT point-like data iteration, ma-
nipulation and visualisation.

pept.Pixels(pixels_array, xlim, ylim, **kwargs) A class managing a 2D pixel space with physical dimen-
sions, including tools for pixel manipulation and visual-
isation.

pept.Voxels(voxels_array, xlim, ylim, zlim, ...) A class managing a 3D voxel space with physical dimen-
sions, including tools for voxel manipulation and visual-
isation.

pept.Pipeline(transformers) A PEPT processing pipeline, chaining multiple Filter
and Reducer for efficient, parallel execution.

pept.LineData

class pept.LineData(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'],
**kwargs)

Bases: IterableSamples

A class for PEPT LoR data iteration, manipulation and visualisation.

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each defined by two points, regardless of the
geometry of the scanner used. This class is used for the encapsulation of LoRs (or any lines!), efficiently yielding
samples of lines of an adaptive sample_size and overlap.

It is an abstraction over PET / PEPT scanner geometries and data formats, as once the raw LoRs (be they stored
as binary, ASCII, etc.) are transformed into the common LineData format, any tracking, analysis or visualisation
algorithm in the pept package can be used interchangeably. Moreover, it provides a stable, user-friendly interface
for iterating over LoRs in samples - this is useful for tracking algorithms, as they generally take a few LoRs (a
sample), produce a tracer position, then move to the next sample of LoRs, repeating the procedure. Using
overlapping samples is also useful for improving the tracking rate of the algorithms.

This is the base class for LoR data; the subroutines for transforming other data formats into LineData can be found
in pept.scanners. If you’d like to integrate another scanner geometry or raw data format into this package, you can
check out the pept.scanners.parallel_screens module as an example. This usually only involves writing a single
function by hand; then all attributes and methods from LineData will be available to your new data format. If
you’d like to use LineData as the base for other algorithms, you can check out the pept.tracking.peptml.cutpoints
module as an example; the Cutpoints class iterates the samples of LoRs in any LineData in parallel, using
concurrent.futures.ThreadPoolExecutor.

See also:

32 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.PointData
Encapsulate points for ease of iteration and plotting.

pept.read_csv
Fast CSV file reading into numpy arrays.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

pept.tracking.Cutpoints
Compute cutpoints from pept.LineData.

Notes

The class saves lines as a C-contiguous numpy array for efficient access in C / Cython functions. The inner data
can be mutated, but do not change the number of rows or columns after instantiating the class.

Examples

Initialise a LineData instance containing 10 lines with a sample_size of 3.

>>> import pept
>>> import numpy as np
>>> lines_raw = np.arange(70).reshape(10, 7)
>>> print(lines_raw)
[[ 0 1 2 3 4 5 6]
[ 7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
[49 50 51 52 53 54 55]
[56 57 58 59 60 61 62]
[63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data
pept.LineData (samples: 3)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 10, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
...
[56. 57. ... 61. 62.]
[63. 64. ... 68. 69.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

5.3. Manual 33



PEPT Documentation, Release 0.5.2

>>> line_data[0]
pept.LineData (samples: 1)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
[35. 36. ... 40. 41.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

Notice how rows are repeated from one sample to the next when accessing them, because overlap is now 2:

>>> line_data[0]
pept.LineData (samples: 1)
--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

(continues on next page)

34 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

--------------------------
sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[ 7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]
[21. 22. ... 26. 27.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now change sample_size to 5 and notice again how the number of samples changes:

>>> len(line_data)
8

>>> line_data.sample_size = 5
>>> len(line_data)
2

>>> line_data[0]
pept.LineData (samples: 1)
--------------------------
sample_size = 5
overlap = 0
lines =
(rows: 5, columns: 7)
[[ 0. 1. ... 5. 6.]
[ 7. 8. ... 12. 13.]
...
[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)
--------------------------
sample_size = 5
overlap = 0
lines =
(rows: 5, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
...
[42. 43. ... 47. 48.]
[49. 50. ... 54. 55.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Notice how the samples do not cover the whole input lines_raw array, as the last lines are omitted - think of the
sample_size and overlap. They are still inside the inner lines attribute of line_data though:

5.3. Manual 35



PEPT Documentation, Release 0.5.2

>>> line_data.lines
array([[ 0., 1., 2., 3., 4., 5., 6.],

[ 7., 8., 9., 10., 11., 12., 13.],
[14., 15., 16., 17., 18., 19., 20.],
[21., 22., 23., 24., 25., 26., 27.],
[28., 29., 30., 31., 32., 33., 34.],
[35., 36., 37., 38., 39., 40., 41.],
[42., 43., 44., 45., 46., 47., 48.],
[49., 50., 51., 52., 53., 54., 55.],
[56., 57., 58., 59., 60., 61., 62.],
[63., 64., 65., 66., 67., 68., 69.]])

Attributes
lines

[(N, M>=7) numpy.ndarray] An (N, M>=7) numpy array that stores the PEPT LoRs as time
and cartesian (3D) coordinates of two points defining a line, followed by any additional data.
The data columns are then [time, x1, y1, z1, x2, y2, z2, etc.].

sample_size
[int, list[int], pept.TimeWindow or None] Defining the number of LoRs in a sample;
if it is an integer, a constant number of LoRs are returned per sample. If it is a list of in-
tegers, sample i will have length sample_size[i]. If it is a pept.TimeWindow instance, each
sample will span a fixed time window. If None, custom sample sizes are returned as per the
samples_indices attribute.

overlap
[int, pept.TimeWindow or None] Defining the overlapping LoRs between consecutive
samples. If int, constant numbers of LoRs are used. If pept.TimeWindow, the overlap will be
a constant time window across the data timestamps (first column). If None, custom sample
sizes are defined as per the samples_indices attribute.

samples_indices
[(S, 2) numpy.ndarray] A 2D NumPy array of integers, where row i defines the i-th
sample’s start and end row indices, i.e. sample[i] == data[samples_indices[i, 0]:sam-
ples_indices[i, 1]]. The sample_size and overlap are simply friendly interfaces to setting
the samples_indices.

columns
[(M,) list[str]] A list of strings with the same number of columns as lines containing each
column’s name.

attrs
[dict[str, Any]] A dictionary of other attributes saved on this class. Attribute names start-
ing with an underscore are considered “hidden”.

__init__(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'], **kwargs)
LineData class constructor.

Parameters
lines

[(N, M>=7) numpy.ndarray] An (N, M>=7) numpy array that stores the PEPT LoRs (or
any generic set of lines) as time and cartesian (3D) coordinates of two points defining each
line, followed by any additional data. The data columns are then [time, x1, y1, z1, x2, y2,
z2, etc.].

36 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

sample_size
[int, default 0] An int that defines the number of lines that should be returned when
iterating over lines. A sample_size of 0 yields all the data as one single sample.

overlap
[int, default 0] An int that defines the overlap between two consecutive samples that are
returned when iterating over lines. An overlap of 0 means consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

columns
[List[str], default [“t”, “x1”, “y1”, “z1”, “x2”, “y2”, “z2”]] A list of strings corre-
sponding to the column labels in points.

**kwargs
[extra keyword arguments] Any extra attributes to set in .attrs.

Raises
ValueError

If lines has fewer than 7 columns.

ValueError
If overlap >= sample_size unless sample_size is 0. Overlap has to be smaller than sam-
ple_size. Note that it can also be negative.

Methods

__init__(lines[, sample_size, overlap, columns]) LineData class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

plot([sample_indices, ax, alt_axes, ...]) Plot lines from selected samples using matplotlib.
save(filepath) Save a PEPTObject instance as a binary pickle object.
to_csv(filepath[, delimiter]) Write lines to a CSV file.

5.3. Manual 37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Attributes

attrs

columns

data

lines

overlap

sample_size

samples_indices

property lines

to_csv(filepath, delimiter=' ')
Write lines to a CSV file.

Write all LoRs stored in the class to a CSV file.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

delimiter
[str, default ” “] The delimiter used to separate the values in the CSV file.

plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=0)
Plot lines from selected samples using matplotlib.

Returns matplotlib figure and axes objects containing all lines included in the samples selected by sam-
ple_indices. sample_indices may be a single sample index (e.g. 0), an iterable of indices (e.g. [1,5,6]), or
an Ellipsis (. . . ) for all samples.

Parameters
sample_indices

[int or iterable or Ellipsis, default Ellipsis] The index or indices of the samples
of lines. An int signifies the sample index, an iterable (list-like) signifies multiple sample
indices, while an Ellipsis (. . . ) signifies all samples. The default is . . . (all lines).

ax
[mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes
[bool, default False] If True, plot using the alternative PEPT-style axes convention: z
is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is achieved by
swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

38 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False


PEPT Documentation, Release 0.5.2

colorbar_col
[int, default -1] The column in the data samples that will be used to color the lines. The
default is -1 (the last column).

Returns
fig, ax

[matplotlib figure and axes objects]

Notes

Plotting all lines is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use the faster pept.plots.PlotlyGrapher.

Examples

Plot the lines from sample 1 in a LineData instance:

>>> lors = pept.LineData(...)
>>> fig, ax = lors.plot(1)
>>> fig.show()

Plot the lines from samples 0, 1 and 2:

>>> fig, ax = lors.plot([0, 1, 2])
>>> fig.show()

property attrs

property columns

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

property data

extra_attrs()

hidden_attrs()

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 39

https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property overlap

property sample_size

property samples_indices

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.PointData

class pept.PointData(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)
Bases: IterableSamples

A class for general PEPT point-like data iteration, manipulation and visualisation.

In the context of positron-based particle tracking, points are defined by a timestamp, 3D coordinates and any other
extra information (such as trajectory label or some tracer signature). This class is used for the encapsulation of 3D
points - be they tracer locations, cutpoints, etc. -, efficiently yielding samples of points of an adaptive sample_size
and overlap.

Much like a complement to LineData, PointData is an abstraction over point-like data that may be encountered in
the context of PEPT (e.g. pre-tracked tracer locations), as once the raw points are transformed into the common
PointData format, any tracking, analysis or visualisation algorithm in the pept package can be used interchange-
ably. Moreover, it provides a stable, user-friendly interface for iterating over points in samples - this can be useful
for tracking algorithms, as some take a few points (a sample), produce an accurate tracer location, then move to
the next sample of points, repeating the procedure. Using overlapping samples is also useful for improving the
time resolution of the algorithms.

40 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

This is the base class for point-like data; subroutines that accept and/or return PointData instances (or subclasses
thereof) can be found throughout the pept package. If you’d like to create new algorithms based on them, you
can check out the pept.tracking.peptml.cutpoints module as an example; the Cutpoints class receives a LineData
instance, transforms the samples of LoRs into cutpoints, then initialises itself as a PointData subclass - thereby
inheriting all its methods and attributes.

Raises
ValueError

If overlap >= sample_size. Overlap is required to be smaller than sample_size, unless sam-
ple_size is 0. Note that it can also be negative.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.read_csv
Fast CSV file reading into numpy arrays.

pept.plots.PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

pept.tracking.Cutpoints
Compute cutpoints from pept.LineData.

Notes

This class saves points as a C-contiguous numpy array for efficient access in C / Cython functions. The inner
data can be mutated, but do not change the number of rows or columns after instantiating the class.

Examples

Initialise a PointData instance containing 10 points with a sample_size of 3.

>>> import numpy as np
>>> import pept
>>> points_raw = np.arange(40).reshape(10, 4)
>>> print(points_raw)
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]
[32 33 34 35]
[36 37 38 39]]

>>> point_data = pept.PointData(points_raw, sample_size = 3)
>>> point_data
pept.PointData (samples: 3)
---------------------------
sample_size = 3

(continues on next page)

5.3. Manual 41

https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

(continued from previous page)

overlap = 0
points =
(rows: 10, columns: 4)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
...
[32. 33. 34. 35.]
[36. 37. 38. 39.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

>>> point_data[0]
pept.PointData (samples: 1)
---------------------------
sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)
---------------------------
sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[12. 13. 14. 15.]
[16. 17. 18. 19.]
[20. 21. 22. 23.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(point_data) # Number of samples
3

>>> point_data.overlap = 2
>>> len(point_data)
8

Notice how rows are repeated from one sample to the next when accessing them, because overlap is now 2:

>>> point_data[0]
array([[ 0., 1., 2., 3.],

(continues on next page)

42 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]])

>>> point_data[1]
array([[ 4., 5., 6., 7.],

[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])

Now change sample_size to 5 and notice again how the number of samples changes:

>>> len(point_data)
8

>>> point_data.sample_size = 5
>>> len(point_data)
2

>>> point_data[0]
pept.PointData (samples: 1)
---------------------------
sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[ 0. 1. 2. 3.]
[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)
---------------------------
sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[ 4. 5. 6. 7.]
[ 8. 9. 10. 11.]
[12. 13. 14. 15.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Notice how the samples do not cover the whole input points_raw array, as the last lines are omitted - think of the
sample_size and overlap. They are still inside the inner points attribute of point_data though:

>>> point_data.points
array([[ 0., 1., 2., 3.],

[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.],

(continues on next page)

5.3. Manual 43



PEPT Documentation, Release 0.5.2

(continued from previous page)

[16., 17., 18., 19.],
[20., 21., 22., 23.],
[24., 25., 26., 27.],
[28., 29., 30., 31.],
[32., 33., 34., 35.],
[36., 37., 38., 39.]])

Attributes
points

[(N, M) numpy.ndarray] An (N, M >= 4) numpy array that stores the points as time, followed
by cartesian (3D) coordinates of the point, followed by any extra information. The data
columns are then [time, x, y, z, etc].

sample_size
[int, list[int], pept.TimeWindow or None] Defining the number of points in a sample;
if it is an integer, a constant number of points are returned per sample. If it is a list of
integers, sample i will have length sample_size[i]. If it is a pept.TimeWindow instance, each
sample will span a fixed time window. If None, custom sample sizes are returned as per the
samples_indices attribute.

overlap
[int, pept.TimeWindow or None] Defining the overlapping points between consecutive
samples. If int, constant numbers of points are used. If pept.TimeWindow, the overlap will
be a constant time window across the data timestamps (first column). If None, custom sample
sizes are defined as per the samples_indices attribute.

samples_indices
[(S, 2) numpy.ndarray] A 2D NumPy array of integers, where row i defines the i-th
sample’s start and end row indices, i.e. sample[i] == data[samples_indices[i, 0]:sam-
ples_indices[i, 1]]. The sample_size and overlap are simply friendly interfaces to setting
the samples_indices.

columns
[(M,) list[str]] A list of strings with the same number of columns as points containing
each column’s name.

attrs
[dict[str, Any]] A dictionary of other attributes saved on this class. Attribute names start-
ing with an underscore are considered “hidden”.

__init__(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)
PointData class constructor.

Parameters
points

[(N, M) numpy.ndarray] An (N, M >= 4) numpy array that stores points (or any generic 2D
set of data). It expects that the first column is time, followed by cartesian (3D) coordinates
of points, followed by any extra information the user needs. The data columns are then
[time, x, y, z, etc].

sample_size
[int, default 0] An int` that defines the number of points that should be returned when
iterating over points. A sample_size of 0 yields all the data as one single sample.

44 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

overlap
[int, default 0] An int that defines the overlap between two consecutive samples that are
returned when iterating over points. An overlap of 0 means consecutive samples, while an
overlap of (sample_size - 1) implies incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

columns
[List[str], default [“t”, “x”, “y”, “z”]] A list of strings corresponding to the column
labels in points.

**kwargs
[extra keyword arguments] Any extra attributes to set on the class instance.

Raises
ValueError

If line_data does not have (N, M) shape, where M >= 4.

Methods

__init__(points[, sample_size, overlap, columns]) PointData class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

plot([sample_indices, ax, alt_axes, ...]) Plot points from selected samples using matplotlib.
save(filepath) Save a PEPTObject instance as a binary pickle object.
to_csv(filepath[, delimiter]) Write the inner points to a CSV file.

Attributes

attrs

columns

data

overlap

points

sample_size

samples_indices

5.3. Manual 45

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

property points

to_csv(filepath, delimiter=' ')
Write the inner points to a CSV file.

Write all points stored in the class to a CSV file.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

delimiter
[str, default ” “] The delimiter used to separate the values in the CSV file.

plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=-1)
Plot points from selected samples using matplotlib.

Returns matplotlib figure and axes objects containing all points included in the samples selected by sam-
ple_indices. sample_indices may be a single sample index (e.g. 0), an iterable of indices (e.g. [1,5,6]), or
an Ellipsis (. . . ) for all samples.

Parameters
sample_indices

[int or iterable or Ellipsis, default Ellipsis] The index or indices of the samples
of points. An int signifies the sample index, an iterable (list-like) signifies multiple sample
indices, while an Ellipsis (. . . ) signifies all samples. The default is . . . (all points).

ax
[mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes
[bool, default False] If True, plot using the alternative PEPT-style axes convention: z
is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is achieved by
swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

colorbar_col
[int, default -1] The column in the data samples that will be used to color the points.
The default is -1 (the last column).

Returns
fig, ax

[matplotlib figure and axes objects]

Notes

Plotting all points is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use the faster pept.plots.PlotlyGrapher.

46 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

Examples

Plot the points from sample 1 in a PointData instance:

>>> point_data = pept.PointData(...)
>>> fig, ax = point_data.plot(1)
>>> fig.show()

Plot the points from samples 0, 1 and 2:

>>> fig, ax = point_data.plot([0, 1, 2])
>>> fig.show()

property attrs

property columns

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

property data

extra_attrs()

hidden_attrs()

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property overlap

property sample_size

property samples_indices

5.3. Manual 47



PEPT Documentation, Release 0.5.2

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.Pixels

class pept.Pixels(pixels_array, xlim, ylim, **kwargs)
Bases: object

A class managing a 2D pixel space with physical dimensions, including tools for pixel manipulation and visual-
isation.

The .pixels attribute is simply a numpy.ndarray[ndim=2, dtype=float64]. If you think of Pixels as an image, the
origin is the top left corner, the X-dimension is the left edge and the Y-dimension is the top edge, so that it can
be indexed as .pixels[ix, iy].

The .attrs dictionary can be used to store extra information.

See also:

konigcell.Voxels
A class managing a physical 3D voxel space.

konigcell.dynamic2d
Rasterize moving particles’ trajectories.

konigcell.static2d
Rasterize static particles’ positions.

konigcell.dynamic_prob2d
2D probability distribution of a quantity.

48 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

Notes

The class saves pixels as a contiguous numpy array for efficient access in C / Cython functions. The inner data
can be mutated, but do not change the shape of the array after instantiating the class.

Examples

Create a zeroed 4x4 Pixels grid:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((4, 4), xlim = [0, 10], ylim = [0, 5])
>>> pixels
Pixels
------
xlim = [ 0. 10.]
ylim = [0. 5.]
pixels =
(shape: (4, 4))
[[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 0.]]

attrs = {}

Or create a Pixels instance from another array (e.g. an image or matrix):

>>> import numpy as np
>>> matrix = np.ones((3, 3))
>>> pixels = kc.Pixels(matrix, xlim = [0, 10], ylim = [-5, 5])
>>> pixels
Pixels
------
xlim = [ 0. 10.]
ylim = [-5. 5.]
pixels =
(shape: (3, 3))
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

attrs = {}

Access pixels’ properties directly:

>>> pixels.xlim # ndarray[xmin, xmax]
>>> pixels.ylim # ndarray[ymin, ymax]
>>> pixels.pixel_size # ndarray[xsize, ysize]
>>> pixels.pixels.shape # pixels resolution - tuple[nx, ny]

You can save extra attributes about the pixels instance in the attrs dictionary:

>>> pixels.attrs["dpi"] = 300
>>> pixels
Pixels

(continues on next page)

5.3. Manual 49



PEPT Documentation, Release 0.5.2

(continued from previous page)

------
xlim = [ 0. 10.]
ylim = [-5. 5.]
pixels =
(shape: (3, 3))
[[1. 1. 1.]
[1. 1. 1.]
[1. 1. 1.]]

attrs = {
'dpi': 300

}

The lower left and upper right corners of the pixel grid, in physical coordinates (the ones given by xlim and ylim):

>>> pixels.lower
array([ 0., -5.])

>>> pixels.upper
array([10., 5.])

You can access the underlying NumPy array directly:

>>> pixels.pixels
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

Indexing is forwarded to the NumPy array:

>>> pixels[:, :]
array([[1., 1., 1.],

[1., 1., 1.],
[1., 1., 1.]])

Transform physical units into pixel indices:

>>> pixels.from_physical([5, 0]) # pixel centres
array([1., 1.])

>>> pixels.from_physical([5, 0], corner = True) # lower left corners
array([1.5, 1.5])

Transform pixel indices into physical units:

>>> pixels.to_physical([0, 0]) # pixels centres
array([ 1.66666667, -3.33333333])

>>> pixels.to_physical([0, 0], corner = True) # lower left corners
array([ 0., -5.])

Save Pixels instance to disk, as a binary archive:

50 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> pixels.save("pixels.pickle")
>>> pixels = kc.load("pixels.pickle")

Create deep copy of a Pixels instance:

>>> Pixels.copy()

Matplotlib plotting (optional, if Matplotlib is installed):

>>> fig, ax = pixels.plot()
>>> fig.show()

Plotly trace (optional, if Plotly is installed):

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

Attributes
pixels

[(M, N) np.ndarray[ndim=2, dtype=float64]] The 2D numpy array containing the pixel val-
ues. This class assumes a uniform grid of pixels - that is, the pixel size in each dimension is
constant, but can vary from one dimension to another.

xlim
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower and upper boundaries of the pixellised
volume in the x-dimension, formatted as [x_min, x_max].

ylim
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower and upper boundaries of the pixellised
volume in the y-dimension, formatted as [y_min, y_max].

pixel_size
[(2,) np.ndarray[ndim=1, dtype=float64]] The lengths of a pixel in the x- and y-
dimensions, respectively.

pixel_grids
[list[(M+1,) np.ndarray, (N+1,) np.ndarray]] A list containing the pixel gridlines in
the x- and y-dimensions. Each dimension’s gridlines are stored as a numpy of the pixel
delimitations, such that it has length (M + 1), where M is the number of pixels in a given
dimension.

lower
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower left corner of the pixel rectangle; cor-
responds to [xlim[0], ylim[0]].

upper
[(2,) np.ndarray[ndim=1, dtype=float64]] The upper right corner of the pixel rectangle;
corresponds to [xlim[1], ylim[1]].

attrs
[dict[Any, Any]] A dictionary storing any other user-defined information.

__init__(pixels_array, xlim, ylim, **kwargs)
Pixels class constructor.

5.3. Manual 51

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict


PEPT Documentation, Release 0.5.2

Parameters
pixels_array

[3D numpy.ndarray] A 3D numpy array, corresponding to a pre-defined pixel space.

xlim
[(2,) numpy.ndarray] The lower and upper boundaries of the pixellised volume in the
x-dimension, formatted as [x_min, x_max].

ylim
[(2,) numpy.ndarray] The lower and upper boundaries of the pixellised volume in the
y-dimension, formatted as [y_min, y_max].

**kwargs
[extra keyword arguments] Extra user-defined attributes to be saved in .attrs.

Raises
ValueError

If pixels_array does not have exactly 2 dimensions or if xlim or ylim do not have exactly 2
values each.

Notes

No copies are made if pixels_array, xlim and ylim are contiguous NumPy arrays with dtype=float64.

Methods

__init__(pixels_array, xlim, ylim, **kwargs) Pixels class constructor.
add_lines(lines[, verbose]) Pixellise a sample of lines, adding 1 to each pixel tra-

versed, for each line in the sample.
copy([pixels_array, xlim, ylim]) Create a copy of the current Pixels instance, option-

ally with new pixels_array, xlim and / or ylim.
from_lines(lines, number_of_pixels[, xlim, ...]) Create a pixel space and traverse / pixellise a given

sample of lines.
from_physical(locations[, corner]) Transform locations from physical dimensions to

pixel indices.
heatmap_trace([colorscale, transpose, xgap, ...]) Create and return a Plotly Heatmap trace of the pix-

els.
load(filepath) Load a saved / pickled Pixels object from filepath.
plot([ax]) Plot pixels as a heatmap using Matplotlib.
save(filepath) Save a Pixels instance as a binary pickle object.
to_physical(indices[, corner]) Transform indices from pixel indices to physical di-

mensions.
zeros(shape, xlim, ylim, **kwargs)

52 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Attributes

attrs

lower

pixel_grids

pixel_size

pixels

upper

xlim

ylim

property pixels

property xlim

property ylim

property attrs

property pixel_size

property pixel_grids

property lower

property upper

static zeros(shape, xlim, ylim, **kwargs)

save(filepath)
Save a Pixels instance as a binary pickle object.

Saves the full object state, including the inner .pixels NumPy array, xlim, etc. in a fast, portable binary
format. Load back the object using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

5.3. Manual 53



PEPT Documentation, Release 0.5.2

Examples

Save a Pixels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((640, 480))
>>> pixels = kc.Pixels(grid, [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = kc.Pixels.load("pixels.pickle")

static load(filepath)
Load a saved / pickled Pixels object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.Pixels

The loaded pept.Pixels instance.

Examples

Save a Pixels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((640, 480))
>>> pixels = kc.Pixels(grid, [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = kc.Pixels.load("pixels.pickle")

copy(pixels_array=None, xlim=None, ylim=None, **kwargs)
Create a copy of the current Pixels instance, optionally with new pixels_array, xlim and / or ylim.

The extra attributes in .attrs are propagated too. Pass new attributes as extra keyword arguments.

from_physical(locations, corner=False)
Transform locations from physical dimensions to pixel indices. If corner = True, return the index of the
bottom left corner of each pixel; otherwise, use the pixel centres.

54 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Create a simple konigcell.Pixels grid, spanning [-5, 5] mm in the X-dimension and [10, 20] mm in the
Y-dimension:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((5, 5), xlim=[-5, 5], ylim=[10, 20])
>>> pixels
Pixels
------
xlim = [-5. 5.]
ylim = [10. 20.]
pixels =
(shape: (5, 5))
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]

attrs = {}

>>> pixels.pixel_size
array([2., 2.])

Transform physical coordinates to pixel coordinates:

>>> pixels.from_physical([-5, 10], corner = True)
array([0., 0.])

>>> pixels.from_physical([-5, 10])
array([-0.5, -0.5])

The pixel coordinates are returned exactly, as real numbers. For pixel indices, round them into values:

>>> pixels.from_physical([0, 15]).astype(int)
array([2, 2])

Multiple coordinates can be given as a 2D array / list of lists:

>>> pixels.from_physical([[0, 15], [5, 20]])
array([[2. , 2. ],

[4.5, 4.5]])

to_physical(indices, corner=False)
Transform indices from pixel indices to physical dimensions. If corner = True, return the coordinates of
the bottom left corner of each pixel; otherwise, use the pixel centres.

5.3. Manual 55



PEPT Documentation, Release 0.5.2

Examples

Create a simple konigcell.Pixels grid, spanning [-5, 5] mm in the X-dimension and [10, 20] mm in the
Y-dimension:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((5, 5), xlim=[-5, 5], ylim=[10, 20])
>>> pixels
Pixels
------
xlim = [-5. 5.]
ylim = [10. 20.]
pixels =
(shape: (5, 5))
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]

attrs = {}

>>> pixels.pixel_size
array([2., 2.])

Transform physical coordinates to pixel coordinates:

>>> pixels.to_physical([0, 0], corner = True)
array([-5., 10.])

>>> pixels.to_physical([0, 0])
array([-4., 11.])

Multiple coordinates can be given as a 2D array / list of lists:

>>> pixels.to_physical([[0, 0], [4, 3]])
array([[-4., 11.],

[ 4., 17.]])

heatmap_trace(colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0)
Create and return a Plotly Heatmap trace of the pixels.

Parameters
colorscale

[str, default “Magma”] The Plotly scheme for color-coding the pixel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

transpose
[bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

56 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

Examples

Create a Pixels array and plot it as a heatmap using Plotly:

>>> import konigcell as kc
>>> import numpy as np
>>> import plotly.graph_objs as go

>>> pixels_raw = np.arange(150).reshape(10, 15)
>>> pixels = kc.Pixels(pixels_raw, [-5, 5], [-5, 10])

>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

plot(ax=None)
Plot pixels as a heatmap using Matplotlib.

Returns matplotlib figure and axes objects containing the pixel values colour-coded in a Matplotlib image
(i.e. heatmap).

Parameters
ax

[mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

Returns
fig, ax

Matplotlib figure and axes objects.

Examples

Pixellise an array of lines and plot them with Matplotlib:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)

>>> fig, ax = pixels.plot()
>>> fig.show()

add_lines(lines, verbose=False)
Pixellise a sample of lines, adding 1 to each pixel traversed, for each line in the sample.

Parameters
lines

[(M, N >= 5) numpy.ndarray] The sample of 2D lines to pixellise. Each line is defined as
a timestamp followed by two 2D points, such that the data columns are [time, x1, y1, x2,
y2, . . . ]. Note that there can be extra data columns which will be ignored.

verbose
[bool, default False] Time the pixel traversal and print it to the terminal.

5.3. Manual 57

https://docs.python.org/3/library/functions.html#object
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False


PEPT Documentation, Release 0.5.2

Raises
ValueError

If lines has fewer than 5 columns.

static from_lines(lines, number_of_pixels, xlim=None, ylim=None, verbose=True)
Create a pixel space and traverse / pixellise a given sample of lines.

The number_of_pixels in each dimension must be defined. If the pixel space boundaries xlim or ylim are
not defined, they are inferred as the boundaries of the lines.

Parameters
lines

[(M, N>=5) numpy.ndarray] The lines that will be pixellised, each defined by a timestamp
and two 2D points, so that the data columns are [time, x1, y1, x2, y2]. Note that extra
columns are ignored.

number_of_pixels
[(2,) list[int]] The number of pixels in the x- and y-dimensions, respectively.

xlim
[(2,) list[float], optional] The lower and upper boundaries of the pixellised volume
in the x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the
boundaries of lines.

ylim
[(2,) list[float], optional] The lower and upper boundaries of the pixellised volume
in the y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the
boundaries of lines.

Returns
pept.Pixels

A new Pixels object with the pixels through which the lines were traversed.

Raises
ValueError

If the input lines does not have the shape (M, N>=5). If the number_of_pixels is not a 1D
list with exactly 2 elements, or any dimension has fewer than 2 pixels.

pept.Voxels

class pept.Voxels(voxels_array, xlim, ylim, zlim, **kwargs)
Bases: object

A class managing a 3D voxel space with physical dimensions, including tools for voxel manipulation and visu-
alisation.

The .voxels attribute is simply a numpy.ndarray[ndim=3, dtype=float64]. The .attrs dictionary can be used to
store extra information.

See also:

konigcell.Pixels
A class managing a physical 2D pixel space.

konigcell.dynamic3d
Rasterize moving particles’ trajectories.

58 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

konigcell.static3d
Rasterize static particles’ positions.

konigcell.dynamic_prob3d
3D probability distribution of a quantity.

Attributes
voxels

[(M, N, P) np.ndarray[ndim=3, dtype=float64]] The 3D numpy array containing the voxel
values. This class assumes a uniform grid of voxels - that is, the voxel size in each dimension
is constant, but can vary from one dimension to another.

xlim
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower and upper boundaries of the voxel-
lised volume in the x-dimension, formatted as [x_min, x_max].

ylim
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower and upper boundaries of the voxel-
lised volume in the y-dimension, formatted as [y_min, y_max].

zlim
[(2,) np.ndarray[ndim=1, dtype=float64]] The lower and upper boundaries of the voxel-
lised volume in the z-dimension, formatted as [z_min, z_max].

voxel_size
[(3,) np.ndarray[ndim=1, dtype=float64]] The lengths of a voxel in the x-, y- and z-
dimensions, respectively.

voxel_grids
[(3,) list[np.ndarray[ndim=1, dtype=float64]]] A list containing the voxel gridlines in
the x-, y-, and z-dimensions. Each dimension’s gridlines are stored as a numpy of the voxel
delimitations, such that it has length (M + 1), where M is the number of voxels in given
dimension.

lower
[(3,) np.ndarray[ndim=1, dtype=float64]] The lower left corner of the voxel box; corre-
sponds to [xlim[0], ylim[0], zlim[0]].

upper
[(3,) np.ndarray[ndim=1, dtype=float64]] The upper right corner of the voxel box; corre-
sponds to [xlim[1], ylim[1], zlim[1]].

attrs
[dict[Any, Any]] A dictionary storing any other user-defined information.

__init__(voxels_array, xlim, ylim, zlim, **kwargs)
Voxels class constructor.

Parameters
voxels_array

[3D numpy.ndarray] A 3D numpy array, corresponding to a pre-defined voxel space.

xlim
[(2,) numpy.ndarray] The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max].

ylim
[(2,) numpy.ndarray] The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max].

5.3. Manual 59

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#dict
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

zlim
[(2,) numpy.ndarray] The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max].

**kwargs
[extra keyword arguments] Extra user-defined attributes to be saved in .attrs.

Raises
ValueError

If voxels_array does not have exactly 3 dimensions or if xlim, ylim or zlim do not have
exactly 2 values each.

Methods

__init__(voxels_array, xlim, ylim, zlim, ...) Voxels class constructor.
add_lines(lines[, verbose]) Voxellise a sample of lines, adding 1 to each voxel

traversed, for each line in the sample.
copy([voxels_array, xlim, ylim, zlim]) Create a copy of the current Voxels instance, option-

ally with new voxels_array, xlim and / or ylim.
cube_trace(index[, color, opacity, ...]) Get the Plotly Mesh3d trace for a single voxel at in-

dex.
cubes_traces([condition, color, opacity, ...]) Get a list of Plotly Mesh3d traces for all voxels se-

lected by the condition filtering function.
from_lines(lines, number_of_voxels[, xlim, ...]) Create a voxel space and traverse / voxellise a given

sample of lines.
from_physical(locations[, corner]) Transform locations from physical dimensions to

voxel indices.
heatmap_trace([ix, iy, iz, width, ...]) Create and return a Plotly Heatmap trace of a 2D slice

through the voxels.
load(filepath) Load a saved / pickled Voxels object from filepath.
plot([condition, ax, alt_axes]) Plot the voxels in this class using Matplotlib.
plot_volumetric([condition, mode, colorscale]) Create a volumetric PyVista plot - check the mode

argument for the available types.
save(filepath) Save a Voxels instance as a binary pickle object.
scatter_trace([condition, size, color, ...]) Create and return a trace for all the voxels in this class,

with possible filtering.
to_physical(indices[, corner]) Transform indices from voxel indices to physical di-

mensions.
vtk([condition]) Return a PyVista VTK object, exposing all VTK

functionality.
zeros(shape, xlim, ylim, zlim, **kwargs) Create a Voxels object filled with zeros.

60 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Attributes

attrs

lower

upper

voxel_grids

voxel_size

voxels

xlim

ylim

zlim

property voxels

property xlim

property ylim

property zlim

property voxel_size

property voxel_grids

property lower

property upper

property attrs

save(filepath)
Save a Voxels instance as a binary pickle object.

Saves the full object state, including the inner .voxels NumPy array, xlim, etc. in a fast, portable binary
format. Load back the object using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

5.3. Manual 61



PEPT Documentation, Release 0.5.2

Examples

Save a Voxels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((64, 48, 32))
>>> voxels = kc.Voxels(grid, [0, 20], [0, 10])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = kc.Voxels.load("voxels.pickle")

static load(filepath)
Load a saved / pickled Voxels object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.Voxels

The loaded pept.Voxels instance.

Examples

Save a Voxels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((64, 48, 32))
>>> voxels = kc.Voxels(grid, [0, 20], [0, 10])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = kc.Voxels.load("voxels.pickle")

copy(voxels_array=None, xlim=None, ylim=None, zlim=None, **kwargs)
Create a copy of the current Voxels instance, optionally with new voxels_array, xlim and / or ylim.

The extra attributes in .attrs are propagated too. Pass new attributes as extra keyword arguments.

static zeros(shape, xlim, ylim, zlim, **kwargs)
Create a Voxels object filled with zeros.

from_physical(locations, corner=False)
Transform locations from physical dimensions to voxel indices. If corner = True, return the index of the
bottom left corner of each voxel; otherwise, use the voxel centres.

62 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Create a simple konigcell.Voxels grid, spanning [-5, 5] mm in the X-dimension, [10, 20] mm in the Y-
dimension and [0, 10] in Z:

>>> import konigcell as kc
>>> voxels = kc.Voxels.zeros((5, 5, 5), xlim=[-5, 5], ylim=[10, 20],

zlim=[0, 10])
>>> voxels
Voxels
------
xlim = [-5. 5.]
ylim = [10. 20.]
zlim = [10. 20.]
voxels =
(shape: (5, 5, 5))
[[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
...
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]]

attrs = {}

>>> voxels.voxel_size
array([2., 2., 2.])

Transform physical coordinates to voxel coordinates:

>>> voxels.from_physical([-5, 10, 0], corner = True)
array([0., 0., 0.])

>>> voxels.from_physical([-5, 10, 0])
array([-0.5, -0.5, -0.5])

The voxel coordinates are returned exactly, as real numbers. For voxel indices, round them into values:

>>> voxels.from_physical([0, 15, 0]).astype(int)
array([2, 2, 0])

5.3. Manual 63



PEPT Documentation, Release 0.5.2

Multiple coordinates can be given as a 2D array / list of lists:

>>> voxels.from_physical([[0, 15, 0], [5, 20, 10]])
array([[ 2. , 2. , -0.5],

[ 4.5, 4.5, 4.5]])

to_physical(indices, corner=False)
Transform indices from voxel indices to physical dimensions. If corner = True, return the coordinates of
the bottom left corner of each voxel; otherwise, use the voxel centres.

Examples

Create a simple konigcell.Voxels grid, spanning [-5, 5] mm in the X-dimension, [10, 20] mm in the Y-
dimension and [0, 10] in Z:

>>> import konigcell as kc
>>> voxels = kc.Voxels.zeros((5, 5, 5), xlim=[-5, 5], ylim=[10, 20],

zlim=[0, 10])
>>> voxels
Voxels
------
xlim = [-5. 5.]
ylim = [10. 20.]
zlim = [10. 20.]
voxels =
(shape: (5, 5, 5))
[[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
...
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]
[[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]
...
[0. 0. ... 0. 0.]
[0. 0. ... 0. 0.]]]

attrs = {}

>>> voxels.voxel_size
array([2., 2., 2.])

Transform physical coordinates to voxel coordinates:

64 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> voxels.to_physical([0, 0, 0], corner = True)
array([-5., 10., 0.])

>>> voxels.to_physical([0, 0, 0])
array([-4., 11., 1.])

Multiple coordinates can be given as a 2D array / list of lists:

>>> voxels.to_physical([[0, 0, 0], [4, 4, 3]])
array([[-4., 11., 1.],

[ 4., 19., 7.]])

plot(condition=<function Voxels.<lambda>>, ax=None, alt_axes=False)
Plot the voxels in this class using Matplotlib.

This plots the centres of all voxels encapsulated in a pept.Voxels instance, colour-coding the voxel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters
condition

[function, default lambda voxel_data: voxel_data > 0] The filtering function applied
to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

ax
[mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes
[bool, default False] If True, plot using the alternative PEPT-style axes convention: z
is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is achieved by
swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

Returns
fig, ax

Matplotlib figure and axes objects.

Notes

Plotting all points is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use Plotly, which is faster.

5.3. Manual 65

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False


PEPT Documentation, Release 0.5.2

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> import konigcell as kc
>>>
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = kc.Voxels(lines, number_of_voxels)

>>> fig, ax = voxels.plot()
>>> fig.show()

plot_volumetric(condition=<function Voxels.<lambda>>, mode='box', colorscale='magma')
Create a volumetric PyVista plot - check the mode argument for the available types.

Parameters
condition

[function, default lambda voxel_data: voxel_data > 0] The filtering function applied
to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

mode
[“box”, “plane”, “slice”] Use a VTK clip box, clip plane or clip slice.

colorscale
[str, default “magma”] The PyVista colorscale to use.

Returns
pyvista.Plotter

A PyVista Figure object that can be .show().

vtk(condition=<function Voxels.<lambda>>)
Return a PyVista VTK object, exposing all VTK functionality.

Parameters
condition

[function, default lambda voxel_data: voxel_data > 0] The filtering function applied
to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

Returns
pyvista.UniformGrid

A VTK UniformGrid object.

cube_trace(index, color=None, opacity=0.4, colorbar=True, colorscale='magma')
Get the Plotly Mesh3d trace for a single voxel at index.

This renders the voxel as a cube. While visually accurate, this method is very computationally intensive -
only use it for fewer than 100 cubes. For more voxels, use the voxels_trace method.

Parameters
index

[(3,) tuple] The voxel indices, given as a 3-tuple.

66 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple


PEPT Documentation, Release 0.5.2

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the voxel values. Is overridden if color
is set.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

Raises
ValueError

If index does not contain exactly three values.

Notes

If you want to render a small number of voxels as cubes using Plotly, use the cubes_traces method, which
creates a list of individual cubes for all voxels, using this function.

cubes_traces(condition=<function Voxels.<lambda>>, color=None, opacity=0.4, colorbar=True,
colorscale='magma')

Get a list of Plotly Mesh3d traces for all voxels selected by the condition filtering function.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

This renders each voxel as individual cubes. While visually accurate, this method is very computationally
intensive - only use it for fewer than 100 cubes. For more voxels, use the voxels_trace method.

Parameters
condition

[function, default lambda voxels: voxels > 0] The filtering function applied to the voxel
data before plotting it. It should return a boolean mask (a numpy array of the same shape,
filled with True and False), selecting all voxels that should be plotted. The default, lambda
x: x > 0 selects all voxels which have a value larger than 0.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the voxel values. Is overridden if color
is set.

5.3. Manual 67

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

colorscale
[str, default “magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

Examples

Plot a konigcell.Voxels on a plotly.graph_objs.Figure.

>>> import konigcell as kc
>>> voxels = ...

>>> import plotly.graph_objs as go
>>>
>>> fig = go.Figure()
>>> fig.add_traces(voxels.cubes_traces()) # small number of voxels
>>> fig.show()

scatter_trace(condition=<function Voxels.<lambda>>, size=4, color=None, opacity=0.4, colorbar=True,
colorscale='Magma', colorbar_title=None)

Create and return a trace for all the voxels in this class, with possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of all voxels encapsulated in a pept.Voxels
instance, colour-coding the voxel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters
condition

[function, default lambda voxel_data: voxel_data > 0] The filtering function applied
to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

size
[float, default 4] The size of the plotted voxel points. Note that due to the large num-
ber of voxels in typical applications, the voxel centres are plotted as square points, which
provides an easy to understand image that is also fast and responsive.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the voxel values. Is overridden if color
is set.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at

68 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str


PEPT Documentation, Release 0.5.2

plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels.from_lines(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(voxels.voxels_trace())
>>> grapher.show()

heatmap_trace(ix=None, iy=None, iz=None, width=0, colorscale='Magma', transpose=True)
Create and return a Plotly Heatmap trace of a 2D slice through the voxels.

The orientation of the slice is defined by the input ix (for the YZ plane), iy (XZ), iz (XY) parameters -
which correspond to the voxel index in the x-, y-, and z-dimension. Importantly, at least one of them must
be defined.

Parameters
ix

[int, optional] The index along the x-axis of the voxels at which a YZ slice is to be taken.
One of ix, iy or iz must be defined.

iy
[int, optional] The index along the y-axis of the voxels at which a XZ slice is to be taken.
One of ix, iy or iz must be defined.

iz
[int, optional] The index along the z-axis of the voxels at which a XY slice is to be taken.
One of ix, iy or iz must be defined.

width
[int, default 0] The number of voxel layers around the given slice index to collapse (i.e.
accumulate) onto the heatmap.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

transpose
[bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

Raises
ValueError

If neither of ix, iy or iz was defined.

5.3. Manual 69

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(voxels.heatmap_trace())
>>> fig.show()

add_lines(lines, verbose=False)
Voxellise a sample of lines, adding 1 to each voxel traversed, for each line in the sample.

Parameters
lines

[(M, N >= 7) numpy.ndarray] The sample of 3D lines to voxellise. Each line is defined as
a timestamp followed by two 3D points, such that the data columns are [time, x1, y1, z1,
x2, y2, z2, . . . ]. Note that there can be extra data columns which will be ignored.

verbose
[bool, default False] Time the voxel traversal and print it to the terminal.

Raises
ValueError

If lines has fewer than 7 columns.

static from_lines(lines, number_of_voxels, xlim=None, ylim=None, zlim=None, verbose=True)
Create a voxel space and traverse / voxellise a given sample of lines. The number_of_voxels in each dimen-
sion must be defined. If the voxel space boundaries xlim, ylim or zlim are not defined, they are inferred as
the boundaries of the lines.

Parameters
lines

[(M, N>=7) numpy.ndarray or pept.LineData] The lines that will be voxellised, each
defined by a timestamp and two 3D points, so that the data columns are [time, x1, y1, z1,
x2, y2, z2, . . . ]. Note that extra columns are ignored.

number_of_voxels
[(3,) list[int]] The number of voxels in the x-, y-, and z-dimensions, respectively.

xlim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the
boundaries of lines.

ylim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the
boundaries of lines.

zlim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the z-dimension, formatted as [z_min, z_max]. If undefined, it is inferred from the
boundaries of lines.

70 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float


PEPT Documentation, Release 0.5.2

Returns
pept.Voxels

A new Voxels object with the voxels through which the lines were traversed.

Raises
ValueError

If the input lines does not have the shape (M, N>=7). If the number_of_voxels is not a 1D
list with exactly 3 elements, or any dimension has fewer than 2 voxels.

pept.Pipeline

class pept.Pipeline(transformers)
Bases: PEPTObject

A PEPT processing pipeline, chaining multiple Filter and Reducer for efficient, parallel execution.

After a pipeline is constructed, the fit(samples) method can be called, which will apply the chain of filters and
reducers on the samples of data.

A filter is simply a transformation applied to a sample (e.g. Voxelliser on a single sample of LineData). A reducer
is a transformation applied to a list of all samples (e.g. Stack on all samples of PointData).

Note that only filters can be applied in parallel, but the great advantage of a Pipeline is that it significantly reduces
the amount of data copying and intermediate results’ storage. Reducers will require collecting all results.

There are three execution policies at the moment: “sequential” is single-threaded (slower, but easy to debug),
“joblib” (very fast on medium datasets due to joblib’s caching) and any concurrent.futures.Executor subclass
(e.g. MPIPoolExecutor for parallel processing on distributed clusters).

Examples

A pipeline can be created in two ways: either by adding (+) multiple transformers together, or explicitly con-
structing the Pipeline class.

The first method is the most straightforward:

>>> import pept

>>> filter1 = pept.tracking.Cutpoints(max_distance = 0.5)
>>> filter2 = pept.tracking.HDBSCAN(true_fraction = 0.1)
>>> reducer = pept.tracking.Stack()
>>> pipeline = filter1 + filter2 + reducer

>>> print(pipeline)
Pipeline
--------
transformers = [

Cutpoints(append_indices = False, cutoffs = None, max_distance = 0.5)
HDBSCAN(clusterer = HDBSCAN(), max_tracers = 1, true_fraction = 0.1)
Stack(overlap = None, sample_size = None)

]

>>> lors = pept.LineData(...) # Some samples of lines
>>> points = pipeline.fit(lors)

5.3. Manual 71

https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

The chain of filters can also be applied to a single sample:

>>> point = pipeline.fit_sample(lors[0])

The pipeline’s fit method allows specifying an execution policy:

>>> points = pipeline.fit(lors, executor = "sequential")
>>> points = pipeline.fit(lors, executor = "joblib")

>>> from mpi4py.futures import MPIPoolExecutor
>>> points = pipeline.fit(lors, executor = MPIPoolExecutor)

The pept.Pipeline constructor can also be called directly, which allows the enumeration of filters:

>>> pipeline = pept.Pipeline([filter1, filter2, reducer])

Adding new filters is very easy:

>>> pipeline_extra = pipeline + filter2

Attributes
transformers

[list[pept.base.Filter or pept.base.Reducer]] The list of Transformer to be ap-
plied; this includes both Filter and Reducer instances.

__init__(transformers)
Construct the class from an iterable of Filter, Reducer and/or other Pipeline instances (which will be
flattened).

Methods

__init__(transformers) Construct the class from an iterable of Filter,
Reducer and/or other Pipeline instances (which
will be flattened).

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply all transformers defined to all samples.
fit_sample(sample) Apply all transformers - consecutively - to a single

sample of data.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
optimise(lines[, max_evals, executor, ...])

save(filepath) Save a PEPTObject instance as a binary pickle object.
steps() Return the order of processing steps to apply as a

list where all consecutive sequences of filters are col-
lapsed into tuples.

72 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list


PEPT Documentation, Release 0.5.2

Attributes

filters Only the Filter instances from the transformers.
reducers Only the Reducer instances from the transformers.
transformers The list of Transformer to be applied; this includes

both Filter and Reducer instances.

property filters

Only the Filter instances from the transformers. They can be applied in parallel.

property reducers

Only the Reducer instances from the transformers. They require collecting all parallel results.

property transformers

The list of Transformer to be applied; this includes both Filter and Reducer instances.

fit_sample(sample)
Apply all transformers - consecutively - to a single sample of data. The output type is simply what the
transformers return.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply all transformers defined to all samples. Filters are applied according to the executor policy (e.g.
parallel via “joblib”), while reducers are applied on a single thread.

Parameters
samples

[Iterable] An iterable (e.g. list, tuple, LineData, list[PointData]), whose elements will
be passed through the pipeline.

executor
[“sequential”, “joblib”, or concurrent.futures.Executor subclass, default “joblib”] The
execution policy controlling how the chain of filters are applied to each sample in samples;
“sequential” is single threaded (slow, but easy to debug), “joblib” is multi-threaded (very
fast due to joblib’s caching). Alternatively, a concurrent.futures.Executor subclass can be
used (e.g. MPIPoolExecutor for distributed computing on clusters).

max_workers
[int, optional] The maximum number of workers to use for parallel executors. If None
(default), the maximum number of CPUs are used.

verbose
[bool, default True] If True, show extra information during processing, e.g. loading
bars.

steps()

Return the order of processing steps to apply as a list where all consecutive sequences of filters are collapsed
into tuples.

E.g. [F, F, R, F, R, R, F, F, F] -> [(F, F), R, (F), R, R, (F, F, F)].

optimise(lines, max_evals=200, executor='joblib', max_workers=None, verbose=True, **free_parameters)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

5.3. Manual 73

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

74 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

5.3.3 Auxilliaries

pept.TimeWindow(window) Define a sample_size as a fixed time window / slice.
pept.AdaptiveWindow(window[, max_elems]) Define a sample_size as a time window with a maximum

limit of elements.

pept.TimeWindow

class pept.TimeWindow(window: float)
Bases: object

Define a sample_size as a fixed time window / slice. You can use this as a direct replacement of the sample_size
and overlap.

points = pept.PointData(sample_size = pept.TimeWindow(5.5))

__init__(window: float)→ None

Methods

__init__(window)

Attributes

window

window: float

pept.AdaptiveWindow

class pept.AdaptiveWindow(window: float, max_elems: int = 9223372036854775807)
Bases: object

Define a sample_size as a time window with a maximum limit of elements. All samples with more than
max_elems elements will be shortened.

You can use this as a direct replacement of the sample_size and overlap.

points = pept.PointData(sample_size = pept.AdaptiveWindow(5.5, 200))
points.overlap = AdaptiveWindow(2.)

The adaptive time window approach combines the advantages of fixed sample sizes and time windowing:

• Time windows are robust to tracers moving in and out of the field of view, as they simply ignore the time
slices where almost no LoRs are recorded.

• Fixed sample sizes effectively adapt their spatio-temporal resolution, allowing for higher accuracy when
tracers are passing through more active scanner regions.

5.3. Manual 75

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

All samples with more than ideal_elems are shortened, such that time windows are shrinked when the tracer
activity permits. There exists an ideal time window such that most samples will have roughly ideal_elems,
with a few higher activity ones that are shortened; OptimizeWindow finds this ideal time window for pept.
AdaptiveWindow.

New in pept-0.5.1

__init__(window: float, max_elems: int = 9223372036854775807)

Methods

__init__(window[, max_elems])

Base / Abstract Classes (pept.base)

pept.base.PEPTObject() Base class for all PEPT-oriented objects.
pept.base.IterableSamples(data[, ...]) An class for iterating through an array (or array-like) in

samples with potential overlap.
pept.base.Transformer() Base class for PEPT filters (transforming a sample into

another) and reducers (transforming a list of samples).
pept.base.Filter() Abstract class from which PEPT filters inherit.
pept.base.Reducer() Abstract class from which PEPT reducers inherit.
pept.base.PointDataFilter() An abstract class that defines a filter for samples of

pept.PointData.
pept.base.LineDataFilter() An abstract class that defines a filter for samples of

pept.LineData.
pept.base.VoxelsFilter() An abstract class that defines a filter for samples of

pept.Voxels.

pept.base.PEPTObject

class pept.base.PEPTObject

Bases: object

Base class for all PEPT-oriented objects.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

76 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 77



PEPT Documentation, Release 0.5.2

pept.base.IterableSamples

class pept.base.IterableSamples(data, sample_size=None, overlap=None, columns=[], **kwargs)
Bases: PEPTObject, Collection

An class for iterating through an array (or array-like) in samples with potential overlap.

This class can be used to access samples of data of an adaptive sample_size and overlap without requiring
additional storage.

The samples from the underlying data can be accessed using both indexing (samples[0]) and iteration (for
sample in samples: ...).

Particular cases:
1. If sample_size == 0, all data_samples is returned as one single sample.

2. If overlap >= sample_size, an error is raised.

3. If overlap < 0, lines are skipped between samples.

Raises
ValueError

If overlap >= sample_size unless sample_size is 0. Overlap must be smaller than sample_size.
Note that it can also be negative.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

Attributes
data

[iterable that supports slicing] An iterable (e.g. numpy array) that supports slicing
syntax (data[5:7]) storing the data that will be iterated over in samples.

sample_size
[int] The number of rows in data to be returned in a single sample. A sample_size of 0
yields all the data as a single sample.

overlap
[int] The number of overlapping rows from data between two consecutive samples. An
overlap of 0 implies consecutive samples, while an overlap of (sample_size - 1) means incre-
menting the samples by one. A negative overlap implies skipping values between samples.

__init__(data, sample_size=None, overlap=None, columns=[], **kwargs)
IterableSamples class constructor.

Parameters
data

[iterable] The data that will be iterated over in samples; most commonly a NumPy array.

sample_size
[int or Iterable[Int], optional] The number of rows in data to be returned in a single
sample. A sample_size of 0 yields all the data as a single sample.

78 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

overlap
[int, optional] The number of overlapping rows from data between two consecutive sam-
ples. An overlap of 0 implies consecutive samples, while an overlap of (sample_size -
1) means incrementing the samples by one. A negative overlap implies skipping values
between samples.

Methods

__init__(data[, sample_size, overlap, columns]) IterableSamples class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

attrs

columns

data

overlap

sample_size

samples_indices

property data

property columns

property attrs

extra_attrs()

hidden_attrs()

property samples_indices

property sample_size

property overlap

5.3. Manual 79

https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

80 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.base.Transformer

class pept.base.Transformer

Bases: ABC, PEPTObject

Base class for PEPT filters (transforming a sample into another) and reducers (transforming a list of samples).

You should only need to subclass Filter and Reducer (or even, better, their more specialised subclasses, e.g.
LineDataFilter).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

5.3. Manual 81

https://docs.python.org/3/library/abc.html#abc.ABC


PEPT Documentation, Release 0.5.2

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Filter

class pept.base.Filter

Bases: Transformer

Abstract class from which PEPT filters inherit. You only need to define a method def fit_sample(self, sample),
which processes a single sample.

If you define a filter on LineData, you should subclass LineDataFilter. Same goes for PointData with Point-
DataFilter.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

abstract fit_sample(sample)

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

82 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 83



PEPT Documentation, Release 0.5.2

pept.base.Reducer

class pept.base.Reducer

Bases: Transformer

Abstract class from which PEPT reducers inherit. You only need to define a method def fit(self, samples), which
processes an iterable of samples (most commonly a LineData or PointData).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

abstract fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

84 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.PointDataFilter

class pept.base.PointDataFilter

Bases: Filter

An abstract class that defines a filter for samples of pept.PointData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 85



PEPT Documentation, Release 0.5.2

fit(point_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

86 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.base.LineDataFilter

class pept.base.LineDataFilter

Bases: Filter

An abstract class that defines a filter for samples of pept.LineData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 87



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.VoxelsFilter

class pept.base.VoxelsFilter

Bases: Filter

An abstract class that defines a filter for samples of pept.Voxels.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

88 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(voxels[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(voxels, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 89



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Initialising Scanner Data (pept.scanners)

Convert data from different PET / PEPT scanner geometries and data formats into the common base classes.

The PEPT base classes PointData, LineData, and VoxelData are abstractions over the type of data that may be en-
countered in the context of PEPT (e.g. LoRs are LineData, trajectory points are PointData). Once the raw data is
transformed into the common formats, any tracking, analysis or visualisation algorithm in the pept package can be used
interchangeably.

The pept.scanners subpackage provides modules for transforming the raw data from different PET / PEPT scanner
geometries (parallel screens, modular cameras, etc.) and data formats (binary, ASCII, etc.) into the common base
classes.

If you’d like to integrate another scanner geometry or raw data format into this package, you can check out the
pept.scanners.parallel_screens function as an example. This usually only involves writing a single function by hand;
then all functionality from LineData will be available to your new data format, for free.

pept.scanners.adac_forte(filepath[, ...]) Initialise PEPT lines of response (LoRs) from a binary
file outputted by the ADAC Forte parallel screen detector
list mode (common file extension ".da01").

pept.scanners.parallel_screens(...[, ...]) Initialise PEPT LoRs for parallel screens PET/PEPT de-
tectors from an input CSV file or array.

pept.scanners.ADACGeometricEfficiency(separation)Compute the geometric efficiency of a parallel screens
PEPT detector at different 3D coordinates using Antonio
Guida's formula [1].

pept.scanners.modular_camera(data_file[, ...]) Initialise PEPT LoRs from the modular camera DAQ.

pept.scanners.adac_forte

pept.scanners.adac_forte(filepath, sample_size=None, overlap=None, verbose=True)
Initialise PEPT lines of response (LoRs) from a binary file outputted by the ADAC Forte parallel screen detector
list mode (common file extension “.da01”).

Parameters
filepath

[str] The path to a ADAC Forte-generated binary file from which the LoRs will be read
into the LineData format. If you have multiple files, use a wildcard (*) after their com-
mon substring to concatenate them, e.g. “DS1.da*” will add [“DS1.da01”, “DS1.da02”,
“DS1.da02_02”].

90 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str


PEPT Documentation, Release 0.5.2

sample_size
[int, default 0] An int that defines the number of lines that should be returned when
iterating over lines. A sample_size of 0 yields all the data as one single sample. A good
starting value would be 200 times the maximum number of tracers that would be tracked.

overlap
[int, default 0] An int that defines the overlap between two consecutive samples that are
returned when iterating over lines. An overlap of 0 implies consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

verbose
[bool, default True] An option that enables printing the time taken for the initialisation
of an instance of the class. Useful when reading large files (10gb files for PEPT data is not
unheard of).

Returns
LineData

The initialised LoRs.

Raises
FileNotFoundError

If the input filepath does not exist.

ValueError
If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that it can also
be negative.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

pept.read_csv
Fast CSV file reading into numpy arrays.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a ParallelScreens array for three LoRs on a parallel screens PEPT scanner (i.e. each line is defined by
two points each) with a head separation of 500 mm:

>>> lors = pept.scanners.adac_forte("binary_data_adac.da01")
Initialised the PEPT data in 0.011 s.

>>> lors
LineData
--------
sample_size = 0
overlap = 0

(continues on next page)

5.3. Manual 91

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

(continued from previous page)

samples = 1
lines =
[[0.00000000e+00 1.62250000e+02 3.60490000e+02 ... 4.14770000e+02
3.77010000e+02 3.10000000e+02]
[4.19512195e-01 2.05910000e+02 2.68450000e+02 ... 3.51640000e+02
2.95000000e+02 3.10000000e+02]
[8.39024390e-01 3.16830000e+02 1.26260000e+02 ... 2.74350000e+02
3.95300000e+02 3.10000000e+02]
...
[1.98255892e+04 2.64320000e+02 2.43080000e+02 ... 2.25970000e+02
4.01200000e+02 3.10000000e+02]
[1.98263928e+04 3.19780000e+02 3.38660000e+02 ... 2.75530000e+02
5.19200000e+02 3.10000000e+02]
[1.98271964e+04 2.41310000e+02 4.15360000e+02 ... 2.91460000e+02
4.63150000e+02 3.10000000e+02]]

lines.shape = (32526, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.parallel_screens

pept.scanners.parallel_screens(filepath_or_array, screen_separation, sample_size=None, overlap=None,
verbose=True, **kwargs)

Initialise PEPT LoRs for parallel screens PET/PEPT detectors from an input CSV file or array.

The expected data columns in the file are `[time, x1, y1, x2, y2]`. This is automatically transformed into the
standard Lines format with columns being [time, x1, y1, z1, x2, y2, z2], where z1 = 0 and z2 = screen_separation.

ParallelScreens can be initialised with a predefined numpy array of LoRs or read data from a .csv.

Parameters
filepath_or_array

[[str, pathlib.Path, IO] or numpy.ndarray (N, 5)] A path to a file to be read from or an
array for initialisation. A path is a string with the (absolute or relative) path to the data file
or a URL from which the PEPT data will be read. It should include the full file name, along
with its extension (.csv, .a01, etc.).

screen_separation
[float] The separation (in mm) between the two PEPT screens corresponding to the z co-
ordinate of the second point defining each line. The attribute lines, with columns [time, x1,
y1, z1, x2, y2, z2], will have z1 = 0 and z2 = screen_separation.

sample_size
[int, default 0] An int that defines the number of lines that should be returned when
iterating over lines. A sample_size of 0 yields all the data as one single sample. A good
starting value would be 200 times the maximum number of tracers that would be tracked.

overlap
[int, default 0] An int that defines the overlap between two consecutive samples that are
returned when iterating over lines. An overlap of 0 implies consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

92 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

verbose
[bool, default True] An option that enables printing the time taken for the initialisation
of an instance of the class. Useful when reading large files (10gb files for PEPT data is not
unheard of).

**kwargs
[other keyword arguments] Other keyword arguments to be passed to pept.read_csv, e.g.
“skiprows” or “max_rows”. See the pept.read_csv documentation for other arguments.

Returns
LineData

The initialised LoRs.

Raises
ValueError

If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that it can also
be negative.

ValueError
If the data file does not have the (N, M >= 5) shape.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

pept.read_csv
Fast CSV file reading into numpy arrays.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a LineData array for three LoRs on a parallel screens PEPT scanner (i.e. each line is defined by two
points each) with a head separation of 500 mm:

>>> lors_raw = np.array([
>>> [2, 100, 150, 200, 250],
>>> [4, 350, 250, 100, 150],
>>> [6, 450, 350, 250, 200]
>>> ])

>>> screen_separation = 500
>>> lors = pept.scanners.parallel_screens(lors_raw, screen_separation)
Initialised PEPT data in 0.001 s.

>>> lors
LineData
--------
sample_size = 0
overlap = 0

(continues on next page)

5.3. Manual 93

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

(continued from previous page)

samples = 1
lines =
[[ 2. 100. 150. 0. 200. 250. 500.]
[ 4. 350. 250. 0. 100. 150. 500.]
[ 6. 450. 350. 0. 250. 200. 500.]]

lines.shape = (3, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.ADACGeometricEfficiency

class pept.scanners.ADACGeometricEfficiency(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])
Bases: PEPTObject

Compute the geometric efficiency of a parallel screens PEPT detector at different 3D coordinates using Antonio
Guida’s formula [1].

The default xlim and ylim values represent the active detector area of the ADAC Forte scanner used at the Uni-
versity of Birmingham, but can be changed to any parallel screens detector active area range.

This class assumes PEPT coordinates, with the Y and Z axes being swapped, such that Y points upwards and Z
is perpendicular to the two detectors.

References

[1]

Examples

Simply instantiate the class with the head separation, then ‘call’ it with the (x, y, z) coordinates of the point at
which to evaluate the geometric efficiency:

>>> import pept
>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

Alternatively, the separation may be specified using the both the starting and ending limits:

>>> separation = [-10, 510]
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

You can evaluate multiple points by using a list / array of values:

>>> geom([250, 260], 250, 250)
array([0.18669302, 0.19730517])

Compute the variation in geometric efficiency in the XY plane:

>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)

94 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> # Range of x, y values to evaluate the geometric efficiency at
>>> import numpy as np
>>> x = np.linspace(120, 480, 100)
>>> y = np.linspace(50, 550, 100)
>>> z = 250

>>> # Evaluate EG on a 2D grid of values at all combinations of x, y
>>> xx, yy = np.meshgrid(x, y)
>>> eg = geom(xx, yy, z)

The geometric efficiencies can be visualised using a Plotly heatmap or contour plot:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(go.Contour(x = x, y = y, z = eg))
>>> fig.show()

For an interactive 3D volumetric / voxel plot, you can use PyVista:

>>> # Import necessary libraries; you may need to install PyVista
>>> import numpy as np
>>> import pept
>>> import pyvista as pv

>>> # Instantiate the ADACGeometricEfficiency class
>>> geom = pept.scanners.ADACGeometricEfficiency(500)

>>> # Lower and upper corners of the grid over which to compute the GE
>>> lower = np.array([115, 50, 5])
>>> upper = np.array([490, 550, 495])

>>> # Create 3D meshgrid of values and evaluate the GE at each point
>>> n = 40
>>> x = np.linspace(lower[0], upper[0], n)
>>> y = np.linspace(lower[1], upper[1], n)
>>> z = np.linspace(lower[2], upper[2], n)
>>> xx, yy, zz = np.meshgrid(x, y, z)
>>> eg = geom(xx, yy, zz)

>>> # Create PyVista grid of values
>>> grid = pv.UniformGrid()
>>> grid.dimensions = np.array(eg.shape) + 1
>>> grid.origin = lower
>>> grid.spacing = (upper - lower) / n
>>> grid.cell_arrays["values"] = eg.flatten(order="F")

>>> # Create PyVista volumetric / voxel plot with an interactive clipper
>>> p = pv.Plotter()
>>> p.add_mesh_clip_plane(grid)
>>> p.show()

Attributes

5.3. Manual 95



PEPT Documentation, Release 0.5.2

xlim
[(2,) np.ndarray, default [111.78, 491.78]] The limits of the active detector area in the
x-dimension.

ylim
[(2,) np.ndarray, default [46.78, 556.78]] The limits of the active detector area in the
y-dimension.

zlim
[(2,) np.ndarray] The limits of the active detector area in the z-dimension.

__init__(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])

Methods

__init__(separation[, xlim, ylim])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

eg(x, y, z) Return the geometric efficiency evaluated at a single
point (x, y, z) in PEPT coordinates, i.e. Y points up-
wards.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

eg(x, y, z)
Return the geometric efficiency evaluated at a single point (x, y, z) in PEPT coordinates, i.e. Y points
upwards.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

96 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.scanners.modular_camera

pept.scanners.modular_camera(data_file, sample_size=None, overlap=None, verbose=True)
Initialise PEPT LoRs from the modular camera DAQ.

Can read data from a .da_1 file or equivalent. The file must contain the standard datawords from the modular
camera output. This will then be automatically transformed into the standard LineData format with every row
being [time, x1, y1, z1, x2, y2, z2], where the geometry is derived from the C-extension. The current useable
geometry is a square layout with 4 stacks for 4 modules, separated by 250 mm.

Parameters
data_file

[str] A string with the (absolute or relative) path to the data file from which the PEPT data
will be read. It should include the full file name, along with the extension (.da_1)

sample_size
[int, optional] An int` that defines the number of lines that should be returned when iterating
over _lines. A sample_size of 0 yields all the data as one single sample. (Default is 200)

overlap
[int, optional] An int that defines the overlap between two consecutive samples that are
returned when iterating over _lines. An overlap of 0 means consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap

5.3. Manual 97

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size. (Default is 0)

verbose
[bool, optional] An option that enables printing the time taken for the initialisation of an
instance of the class. Useful when reading large files (10gb files for PEPT data is not unheard
of). (Default is True)

Returns
LineData

The initialised LoRs.

Raises
ValueError

If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that it can also
be negative.

ValueError
If the data file does not have (N, 7) shape.

Tracking Algorithms (pept.tracking)

Tracer location, identification and tracking algorithms.

The pept.tracking subpackage hosts different tracking algorithms, working with both the base classes, as well as with
generic NumPy arrays.

All algorithms here are either pept.base.Filter or pept.base.Reducer subclasses, implementing the .fit and
.fit_sample methods; here is an example using PEPT-ML:

>>> from pept.tracking import *
>>>
>>> cutpoints = Cutpoints(0.5).fit(lines)
>>> clustered = HDBSCAN(0.15).fit(cutpoints)
>>> centres = (SplitLabels() + Centroids() + Stack()).fit(clustered)

Once the processing steps have been tuned (see the Tutorials), you can chain all filters into a pept.Pipeline for efficient,
parallel execution:

>>> pipeline = (
>>> Cutpoints(0.5) +
>>> HDBSCAN(0.15) +
>>> SplitLabels() + Centroids() + Stack()
>>> )
>>> centres = pipeline.fit(lines)

If you would like to implement a PEPT algorithm, all you need to do is to subclass a pept.base.Filter and define
the method .fit_sample(sample) - and you get parallel execution and pipeline chaining for free!

>>> import pept
>>>
>>> class NewAlgorithm(pept.base.LineDataFilter):
>>> def __init__(self, setting1, setting2 = None):
>>> self.setting1 = setting1
>>> self.setting2 = setting2

(continues on next page)

98 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

(continued from previous page)

>>>
>>> def fit_sample(self, sample: pept.LineData):
>>> processed_points = ...
>>> return pept.PointData(processed_points)

Tracking Optimisation

pept.tracking.Debug([verbose, max_samples]) Print types and statistics about the objects being pro-
cessed in a pept.Pipeline.

pept.tracking.OptimizeWindow(ideal_elems[, ...]) Automatically determine optimum adaptive time win-
dow to have an ideal number of elements per sample.

pept.tracking.Debug

class pept.tracking.Debug(verbose=5, max_samples=10)
Bases: Reducer

Print types and statistics about the objects being processed in a pept.Pipeline.

Reducer signature:

PointData -> Debug.fit -> PointData
LineData -> Debug.fit -> LineData

list[PointData] -> Debug.fit -> list[PointData]
list[LineData] -> Debug.fit -> list[LineData]

np.ndarray -> Debug.fit -> np.ndarray
Any -> Debug.fit -> Any

This is a reducer, so it will collect all samples processed up to the point of use, print them, and return them
unchanged.

New in pept-0.5.1

Examples

A Debug is normally added in a Pipeline:

>>> import pept
>>> import pept.tracking as pt
>>>
>>> pept.Pipeline([
>>> # First pass of clustering
>>> pt.Cutpoints(max_distance = 0.2),
>>> pt.HDBSCAN(true_fraction = 0.15),
>>> pt.SplitLabels() + pt.Centroids(cluster_size = True, error = True),
>>>
>>> pt.Debug(),
>>> pt.Stack(),
>>> ])

5.3. Manual 99



PEPT Documentation, Release 0.5.2

__init__(verbose=5, max_samples=10)

Methods

__init__([verbose, max_samples])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

100 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

fit(samples)

pept.tracking.OptimizeWindow

class pept.tracking.OptimizeWindow(ideal_elems, overlap=0.0, low=0.3, high=3)
Bases: Reducer

Automatically determine optimum adaptive time window to have an ideal number of elements per sample.

Reducer signature:

LineData -> OptimizeWindow.fit -> LineData
list[LineData] -> OptimizeWindow.fit -> LineData

PointData -> OptimizeWindow.fit -> PointData
list[PointData] -> OptimizeWindow.fit -> PointData
numpy.ndarray -> OptimizeWindow.fit -> PointData

The adaptive time window approach combines the advantages of fixed sample sizes and time windowing:

• Time windows are robust to tracers moving in and out of the field of view, as they simply ignore the time
slices where almost no LoRs are recorded.

• Fixed sample sizes effectively adapt their spatio-temporal resolution, allowing for higher accuracy when
tracers are passing through more active scanner regions.

All samples with more than ideal_elems are shortened, such that time windows are shrinked when the tracer
activity permits. There exists an ideal time window such that most samples will have roughly ideal_elems,
with a few higher activity ones that are shortened; OptimizeWindow finds this ideal time window for pept.
AdaptiveWindow.

New in pept-0.5.1

Examples

Find an adaptive time window that is ideal for about 200 LoRs per sample:

>>> import pept
>>> import pept.tracking as pt
>>> lors = pept.LineData(...)
>>> lors = pt.OptimizeWindow(ideal_elems = 200).fit(lors)

OptimizeWindow can be used at the start of a pipeline; an optional overlap parameter can be used to define an
overlap as a ratio to the ideal time window found. For example, if the ideal time window found is 100 ms, an
overlap of 0.5 will result in an overlapping time interval of 50 ms:

5.3. Manual 101



PEPT Documentation, Release 0.5.2

>>> pipeline = pept.Pipeline([
>>> pt.OptimizeWindow(200, overlap = 0.5),
>>> pt.BirminghamMethod(0.5),
>>> pt.Stack(),
>>> ])

__init__(ideal_elems, overlap=0.0, low=0.3, high=3)

Methods

__init__(ideal_elems[, overlap, low, high])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

evaluate(window)

fit(data)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(data)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

102 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

evaluate(window)

General-Purpose Transformers

pept.tracking.Stack([sample_size, overlap]) Stack iterables - for example a list[pept.LineData]
into a single pept.LineData, a list[list] into a flat-
tened list.

pept.tracking.SplitLabels([remove_labels, ...]) Split a sample of data into unique label values, option-
ally removing noise and extracting _lines attributes.

pept.tracking.SplitAll alias of GroupBy
pept.tracking.GroupBy(column) Stack all samples and split them into a list according to

a named / numeric column index.
pept.tracking.Centroids([error, ...]) Compute the geometric centroids of a list of samples of

points.
pept.tracking.LinesCentroids([remove, ...]) Compute the minimum distance point of some pept.

LineData while iteratively removing a fraction of the
furthest lines.

pept.tracking.Condition(*conditions) Select only data satisfying multiple conditions, given as
a string, a function or list thereof; e.g.

pept.tracking.SamplesCondition(*conditions) Select only samples satisfying multiple conditions, given
as a string, a function or list thereof; e.g.

pept.tracking.Remove(*columns) Remove columns (either column names or indices) from
pept.LineData or pept.PointData.

pept.tracking.Swap(*swaps[, inplace]) Swap two columns in a LineData or PointData.

5.3. Manual 103



PEPT Documentation, Release 0.5.2

pept.tracking.Stack

class pept.tracking.Stack(sample_size=None, overlap=None)
Bases: Reducer

Stack iterables - for example a list[pept.LineData] into a single pept.LineData, a list[list] into a
flattened list.

Reducer signature:

list[LineData] -> Stack.fit -> LineData
list[PointData] -> Stack.fit -> PointData

list[list[Any]] -> Stack.fit -> list[Any]
list[numpy.ndarray] -> Stack.fit -> numpy.ndarray

other -> Stack.fit -> other

Can optionally set a given sample_size and overlap. This is useful when collecting a list of processed samples
back into a single object.

__init__(sample_size=None, overlap=None)

Methods

__init__([sample_size, overlap])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

104 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitLabels

class pept.tracking.SplitLabels(remove_labels=True, extract_lines=False, noise=False)
Bases: Filter

Split a sample of data into unique label values, optionally removing noise and extracting _lines attributes.

Filter signature:

# `extract_lines` = False (default)
LineData -> SplitLabels.fit_sample -> list[LineData]
PointData -> SplitLabels.fit_sample -> list[PointData]

# `extract_lines` = True and PointData.attrs["_lines"] exists
PointData -> SplitLabels.fit_sample -> list[LineData]

The sample of data must have a column named exactly “label”. If remove_label = True (default), the “label”
column is removed.

__init__(remove_labels=True, extract_lines=False, noise=False)

5.3. Manual 105



PEPT Documentation, Release 0.5.2

Methods

__init__([remove_labels, extract_lines, noise])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample: IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

106 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitAll

pept.tracking.SplitAll

alias of GroupBy

pept.tracking.GroupBy

class pept.tracking.GroupBy(column)
Bases: Reducer

Stack all samples and split them into a list according to a named / numeric column index.

Reducer signature:

LineData -> SplitAll.fit -> list[LineData]
list[LineData] -> SplitAll.fit -> list[LineData]

PointData -> SplitAll.fit -> list[PointData]
list[PointData] -> SplitAll.fit -> list[PointData]

numpy.ndarray -> SplitAll.fit -> list[numpy.ndarray]
list[numpy.ndarray] -> SplitAll.fit -> list[numpy.ndarray]

If using a LineData / PointData, you can use a columns name as a string, e.g. SplitAll("label") or a number
SplitAll(4). If using a NumPy array, only numeric indices are accepted.

__init__(column)

5.3. Manual 107



PEPT Documentation, Release 0.5.2

Methods

__init__(column)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

108 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Centroids

class pept.tracking.Centroids(error=False, cluster_size=False, weight=True)
Bases: Filter

Compute the geometric centroids of a list of samples of points.

Filter signature:

PointData -> Centroids.fit_sample -> PointData
list[PointData] -> Centroids.fit_sample -> PointData
numpy.ndarray -> Centroids.fit_sample -> PointData

This filter can be used right after pept.tracking.SplitLabels, e.g.:

>>> (SplitLabels() + Centroids()).fit(points)

If error = True, append a measure of error on the computed centroid as the standard deviation in distances from
centroid to all points. It is saved in an extra column “error”.

If cluster_size = True, append the number of points used for each centroid in an extra column “cluster_size” -
unless weight = True, in which case it is the sum of weights.

If weight = True and there is a column “weight” in the PointData, compute weighted centroids and standard
deviations (if error = True) and the sum of weights (if cluster_size = True). The “weight” column is removed in
the output centroid.

__init__(error=False, cluster_size=False, weight=True)

Methods

__init__([error, cluster_size, weight])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 109



PEPT Documentation, Release 0.5.2

fit_sample(points)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

110 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.tracking.LinesCentroids

class pept.tracking.LinesCentroids(remove=0.1, iterations=6)
Bases: Filter

Compute the minimum distance point of some pept.LineData while iteratively removing a fraction of the
furthest lines.

Filter signature:

list[LineData] -> LinesCentroids.fit_sample -> PointData
LineData -> LinesCentroids.fit_sample -> PointData

numpy.ndarray -> LinesCentroids.fit_sample -> PointData

The code below is adapted from the PEPT-EM algorithm developed by Antoine Renaud and Sam Manger.

__init__(remove=0.1, iterations=6)

Methods

__init__([remove, iterations])

centroid(lors)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

distance_matrix(x, lors)

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

predict(lines)

save(filepath) Save a PEPTObject instance as a binary pickle object.

static centroid(lors)

static distance_matrix(x, lors)

predict(lines)

fit_sample(lines)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

5.3. Manual 111



PEPT Documentation, Release 0.5.2

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

112 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.tracking.Condition

class pept.tracking.Condition(*conditions)
Bases: Filter

Select only data satisfying multiple conditions, given as a string, a function or list thereof; e.g.
Condition("error < 15") selects all points whose “error” column value is smaller than 15.

Filter signature:

PointData -> Condition.fit_sample -> PointData
LineData -> Condition.fit_sample -> LineData

In the simplest case, a column name is specified, plus a comparison, e.g. Condition("error < 15, y >
100"); multiple conditions may be concatenated using a comma.

More complex conditions - where the column name is not the first operand - can be constructed using single
quotes, e.g. using NumPy functions in Condition("np.isfinite('x')") to filter out NaNs and Infs. Quotes
can be used to index columns too: Condition("'0' < 150") selects all rows whose first column is smaller
than 150.

Generally, you can use any function returning a boolean mask, either as a string of code Condition("np.
isclose('x', 3)") or a user-defined function receiving a NumPy array Condition(lambda x: x[:, 0]
< 10).

Finally, multiple such conditions may be supplied separately: Condition(lambda x: x[:, -1] > 10,
"'t' < 50").

__init__(*conditions)

Methods

__init__(*conditions)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

conditions

property conditions

fit_sample(sample: IterableSamples)

5.3. Manual 113



PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

114 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.tracking.SamplesCondition

class pept.tracking.SamplesCondition(*conditions)
Bases: Reducer

Select only samples satisfying multiple conditions, given as a string, a function or list thereof; e.g.
Condition("sample_size > 30") selects all samples with a sample size larger than 30.

Filter signature:

PointData -> SamplesCondition.fit_sample -> PointData
LineData -> SamplesCondition.fit_sample -> LineData

This is different to a Condition, which selects individual points; for SamplesCondition, each sample will be
passed through the conditions.

Conditions can be defined as Python code using the following variables:

• sample - this is the full PointData or LineData, e.g. only keep samples with more than 30 points with
“len(sample.points) > 30”.

• data - this is the raw NumPy array of data wrapped by a PointData or LineData, e.g. only keep samples
which have all X coordinates beyond 100 with SamplesCondition(“np.all(data[:, 1] > 100)”).

• sample_size - this is a shorthand for the number of data points, e.g. only keep samples with more than 30
points with “sample_size > 30”.

Conditions can also be Python functions:

>>> def high_velocity_filter(sample):
>>> return np.all(sample["v"] > 5)

>>> from pept.tracking import SamplesCondition
>>> filtered = SamplesCondition(high_velocity_filter).fit(point_data)

__init__(*conditions)

Methods

__init__(*conditions)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 115



PEPT Documentation, Release 0.5.2

Attributes

conditions

property conditions

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

116 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Remove

class pept.tracking.Remove(*columns)
Bases: Filter

Remove columns (either column names or indices) from pept.LineData or pept.PointData.

Filter signature:

pept.LineData -> Remove.fit_sample -> pept.LineData
pept.PointData -> Remove.fit_sample -> pept.PointData

Examples

To remove a single column named “line_index”:

>>> import pept
>>> from pept.tracking import *
>>> points = pept.PointData(...) # Some dummy data

>>> rem = Remove("line_index")
>>> points_without = rem.fit_sample(points)

Remove all columns starting with “line_index” using a glob operator (*):

>>> points_without = Remove("line_index*").fit_sample(points)

Remove the first column based on its index:

>>> points_without = Remove(0).fit_sample(points)

Finally, multiple removals may be chained into a list:

>>> points_without = Remove(["line_index*", -1]).fit_sample(points)

__init__(*columns)

5.3. Manual 117



PEPT Documentation, Release 0.5.2

Methods

__init__(*columns)

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

columns

property columns

fit_sample(sample: IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

118 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Swap

class pept.tracking.Swap(*swaps, inplace=True)
Bases: Filter

Swap two columns in a LineData or PointData.

Filter signature:

LineData -> Swap.fit_sample -> LineData
PointData -> Swap.fit_sample -> PointData

For example, swap the Y and Z axes: Swap("y, z").fit_sample(points). Add multiple swaps as separate
arguments: Swap("y, z", "label, x").

You can also swap columns at numerical indices by single-quoting them: Swap("'0', '1'").

New in pept-0.4.3

__init__(*swaps, inplace=True)

5.3. Manual 119



PEPT Documentation, Release 0.5.2

Methods

__init__(*swaps[, inplace])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

swaps

property swaps

fit_sample(sample: IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

120 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Space Transformers

pept.tracking.Voxelize(number_of_voxels[, ...]) Asynchronously voxelize samples of lines from a
pept.LineData.

pept.tracking.Interpolate(timestep[, ...]) Interpolate between data points at a fixed sampling rate;
useful for Eulerian fields computation.

pept.tracking.Reorient([dimensions, basis, ...]) Rotate a dataset such that it is oriented according to its
principal axes.

pept.tracking.OutOfViewFilter([max_time, k]) Remove tracer locations that are sparse in time - ie the
k-th nearest detection is later than max_time.

pept.tracking.RemoveStatic(time_window, ...) Remove parts of a PointData where the tracer remains
static.

5.3. Manual 121



PEPT Documentation, Release 0.5.2

pept.tracking.Voxelize

class pept.tracking.Voxelize(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)
Bases: LineDataFilter

Asynchronously voxelize samples of lines from a pept.LineData.

Filter signature:

LineData -> Voxelize.fit_sample -> PointData

This filter is much more memory-efficient than voxelizing all samples of LoRs at once - which often overflows
the available memory. Most often this is used alongside voxel-based tracking algorithms, e.g. pept.tracking.
FPI:

>>> from pept.tracking import *
>>> pipeline = pept.Pipeline([
>>> Voxelize((50, 50, 50)),
>>> FPI(3, 0.4),
>>> Stack(),
>>> ])

Parameters
number_of_voxels

[3-tuple] A tuple-like containing exactly three integers specifying the number of voxels to be
used in each dimension.

xlim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

ylim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

zlim
[(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in
the z-dimension, formatted as [z_min, z_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

set_lims
[(N, 7) numpy.ndarray or pept.LineData, optional] If defined, set the system limits upon
creating the class to the bounding box of the lines in set_lims.

__init__(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)

122 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

Methods

__init__(number_of_voxels[, xlim, ylim, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.
set_lims(lines[, set_xlim, set_ylim, set_zlim])

Attributes

number_of_voxels

xlim

ylim

zlim

set_lims(lines, set_xlim=True, set_ylim=True, set_zlim=True)

property number_of_voxels

property xlim

property ylim

property zlim

fit_sample(sample_lines)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters

5.3. Manual 123



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Interpolate

class pept.tracking.Interpolate(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>,
**kwargs)

Bases: PointDataFilter

Interpolate between data points at a fixed sampling rate; useful for Eulerian fields computation.

Filter signature:

PointData -> Interpolate.fit_sample -> PointData

By default, the linear interpolator scipy.interpolate.interp1d is used. You can specify a different interpolator and
keyword arguments to send it. E.g. nearest-neighbour interpolation: Interpolate(1., kind = "nearest")
or cubic interpolation: Interpolate(1., kind = "cubic").

124 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

All data columns except timestamps are interpolated.

__init__(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>, **kwargs)

Methods

__init__(timestep[, interpolator])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 125



PEPT Documentation, Release 0.5.2

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Reorient

class pept.tracking.Reorient(dimensions='xyz', basis=None, origin=None)
Bases: Reducer

Rotate a dataset such that it is oriented according to its principal axes.

Reducer signature:

PointData -> Reorient.fit -> PointData
list[PointData] -> Reorient.fit -> PointData

np.ndarray -> Reorient.fit -> PointData

By default, this reducer reorients the points such that the axis along which it is most spread out (e.g. lengthwise
in a pipe) becomes the X-axis. The input argument dimensions sets this - the default “xyz” can be changed to
e.g. “zyx” so that the longest data axis becomes the Z-axis.

The reducer also sets three attributes on the returned PointData: - origin: the origin relative to which the initial
data was rotated. - basis: the principal components - or change of basis 3x3 matrix. - eigenvalues: how spread
out the data is in each initial dimension.

If you’d like to reorient a second dataset to the same basis as a first one, set the basis and origin arguments.

New in pept-0.5.0

126 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Reorient a dataset by aligning the longest principal component (e.g. lengthwise in a pipe) to the X-axis:

>>> import pept.tracking as pt
>>> data = PointData(...)
>>> reoriented = pt.Reorient().fit(data)

Reorient it such that the longest principal component (e.g. vertical in a mixer) becomes the Z-axis:

>>> reoriented = pt.Reorient("zyx").fit(data)

Reorient a second dataset to the same orientation basis as the first one:

>>> reoriented2 = pt.Reorient(
>>> basis = reoriented.attrs["basis"],
>>> origin = reoriented.attrs["origin"],
>>> ).fit(other_data)

__init__(dimensions='xyz', basis=None, origin=None)

Methods

__init__([dimensions, basis, origin])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 127



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.OutOfViewFilter

class pept.tracking.OutOfViewFilter(max_time=200.0, k=5)
Bases: Reducer

Remove tracer locations that are sparse in time - ie the k-th nearest detection is later than max_time.

Reducer signature:

PointData -> OutOfViewFilter.fit -> PointData
list[PointData] -> OutOfViewFilter.fit -> PointData
numpy.ndarray -> OutOfViewFilter.fit -> PointData

This reducer (i.e. stacks all data samples, then processes it) is useful when the tracer goes out of the PEPT
scanners and there are a few sparse noisy detections to remove.

New in pept-0.5.1

128 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Select only tracer locations whose next detection is within 200 ms.

>>> import pept
>>> import pept.tracking as pt
>>> trajectories = pept.PointData(...)
>>> # Only keep points whose next detection is within 200 ms
>>> inview = pt.OutOfViewFilter(max_time = 200.).fit(trajectories)

__init__(max_time=200.0, k=5)

Methods

__init__([max_time, k])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 129



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.RemoveStatic

class pept.tracking.RemoveStatic(time_window, max_distance, quantile=0.9)
Bases: Reducer

Remove parts of a PointData where the tracer remains static.

Reducer signature:

PointData -> OutOfViewFilter.fit -> PointData
list[PointData] -> OutOfViewFilter.fit -> PointData
numpy.ndarray -> OutOfViewFilter.fit -> PointData

If there is a time_window in which the tracer does not move more than max_distance, it is removed.

The distances moved are computed relative to the average position within each time window; to make the reducer
more robust to noise, the given distance quantile is compared to max_distance.

New in pept-0.5.2

130 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Given some trajectories from e.g. a long experiment where the particle may have got stuck at some points, we
can remove the static windows with:

import pept
import pept.tracking as pt

trajectories = ...

# Remove positions that spent more than 2 seconds without moving more
# than 20 mm
trajectories_nonstatic = RemoveStatic(

time_window = 2000,
max_distance = 20,

).fit(trajectories)

This reducer, like the rest in pept.tracking, can be chained into a pipeline, for example:

import pept
import pept.tracking as pt

pipeline = pept.Pipeline([
# Remove positions with high errors
pt.Condition("error < 20"),

# Remove tracers that got stuck
pt.RemoveStatic(time_window = 2000, max_distance = 20),

# Trajectory separation
pt.Segregate(window = 20, cut_distance = 15),

# Group each trajectory into its own sample, then stack them
pt.GroupBy("label"),
pt.Stack(),

])

__init__(time_window, max_distance, quantile=0.9)

Methods

__init__(time_window, max_distance[, quantile])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 131



PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

132 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Tracer Locating Algorithms

pept.tracking.BirminghamMethod([fopt,
get_used])

The Birmingham Method is an efficient, analytical tech-
nique for tracking tracers using the LoRs from PEPT
data.

pept.tracking.Cutpoints(max_distance[, ...]) Transform LoRs (a pept.LineData instance) into cut-
points (a pept.PointData instance) for clustering, in par-
allel.

pept.tracking.Minpoints(num_lines,
max_distance)

Transform LoRs (a pept.LineData instance) into min-
points (a pept.PointData instance) for clustering, in par-
allel.

pept.tracking.HDBSCAN(true_fraction[, ...]) Use HDBSCAN to cluster some pept.PointData and
append a cluster label to each point.

pept.tracking.FPI([w, r, lld_counts, verbose]) FPI is a modern voxel-based tracer-location algorithm
that can reliably work with unknown numbers of tracers
in fast and noisy environments.

pept.tracking.BirminghamMethod

class pept.tracking.BirminghamMethod(fopt=0.5, get_used=False)
Bases: LineDataFilter

The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.

Two main methods are provided: fit_sample for tracking a single numpy array of LoRs (i.e. a single sample) and
fit which tracks all the samples encapsulated in a pept.LineData class in parallel.

For the given sample of LoRs (a numpy.ndarray), this function minimises the distance between all of the LoRs,
rejecting a fraction of lines that lie furthest away from the calculated distance. The process is repeated iteratively
until a specified fraction (fopt) of the original subset of LORs remains.

This class is a wrapper around the birmingham_method subroutine (implemented in C), providing tools for asyn-
chronously tracking samples of LoRs. It can return PointData classes which can be easily manipulated and
visualised.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

pept.utilities.read_csv
Fast CSV file reading into numpy arrays.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

pept.scanners.ParallelScreens
Initialise a pept.LineData instance from parallel screens PEPT detectors.

5.3. Manual 133



PEPT Documentation, Release 0.5.2

Examples

A typical workflow would involve reading LoRs from a file, instantiating a BirminghamMethod class, tracking
the tracer locations from the LoRs, and plotting them.

>>> import pept
>>> from pept.tracking.birmingham_method import BirminghamMethod

>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> bham = BirminghamMethod()
>>> locations = bham.fit(lors) # this is a `pept.PointData` instance

>>> grapher = PlotlyGrapher()
>>> grapher.add_points(locations)
>>> grapher.show()

Attributes
fopt

[float] Floating-point number between 0 and 1, representing the target fraction of LoRs in
a sample used to locate a tracer.

get_used
[bool, default False] If True, attach an attribute ._lines to the output PointData con-
taining the sample of LoRs used (+ a column used).

__init__(fopt=0.5, get_used=False)
BirminghamMethod class constructor.

fopt
[float, default 0.5] Float number between 0 and 1, representing the fraction of remaining LORs in a
sample used to locate the particle.

verbose
[bool, default False] Print extra information when initialising this class.

Methods

__init__([fopt, get_used]) BirminghamMethod class constructor.
copy([deep]) Create a deep copy of an instance of this class, includ-

ing all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample) Use the Birmingham method to track a tracer location

from a numpy array (i.e.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample)
Use the Birmingham method to track a tracer location from a numpy array (i.e. one sample) of LoRs.

134 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False


PEPT Documentation, Release 0.5.2

For the given sample of LoRs (a numpy.ndarray), this function minimises the distance between all of the
LoRs, rejecting a fraction of lines that lie furthest away from the calculated distance. The process is repeated
iteratively until a specified fraction (fopt) of the original subset of LORs remains.

Parameters
sample

[(N, M>=7) numpy.ndarray] The sample of LORs that will be clustered. Each LoR is
expressed as a timestamps and a line defined by two points; the data columns are then
[time, x1, y1, z1, x2, y2, z2, extra. . . ].

Returns
locations

[numpy.ndarray or pept.PointData] The tracked locations found.

used
[numpy.ndarray, optional] If get_used is true, then also return a boolean mask of the
LoRs used to compute the tracer location - that is, a vector of the same length as sample,
containing 1 for the rows that were used, and 0 otherwise. [Used for multi-particle tracking,
not implemented yet].

Raises
ValueError

If sample is not a numpy array of shape (N, M), where M >= 7.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 135

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Cutpoints

class pept.tracking.Cutpoints(max_distance, cutoffs=None, append_indices=False)
Bases: LineDataFilter

Transform LoRs (a pept.LineData instance) into cutpoints (a pept.PointData instance) for clustering, in parallel.

Under typical usage, the Cutpoints class is initialised with a pept.LineData instance, automatically calculating
the cutpoints from the samples of lines. The Cutpoints class inherits from pept.PointData, such that once the
cutpoints have been computed, all the methods from the parent class pept.PointData can be used on them (such
as visualisation functionality).

For more control over the operations, pept.tracking.peptml.find_cutpoints can be used - it receives a generic
numpy array of LoRs (one ‘sample’) and returns a numpy array of cutpoints.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.tracking.HDBSCAN
Efficient, parallel HDBSCAN-based clustering of (cut)points.

pept.read_csv
Fast CSV file reading into numpy arrays.

136 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Compute the cutpoints for a LineData instance between lines that are less than 0.1 apart:

>>> line_data = pept.LineData(example_data)
>>> cutpts = peptml.Cutpoints(0.1).fit(line_data)

Compute the cutpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.Cutpoints(0.1).fit_sample(sample)

Attributes
max_distance

[float] The maximum distance between any two lines for their cutpoint to be considered.
A good starting value would be 0.1 mm for small tracers and/or clean data, or 0.2 mm for
larger tracers and/or noisy data.

cutoffs
[list-like of length 6] A list (or equivalent) of the cutoff distances for every axis, formatted
as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the cutpoints which fall within these
cutoff distances are considered. The default is None, in which case they are automatically
computed using pept.tracking.peptml.get_cutoffs.

__init__(max_distance, cutoffs=None, append_indices=False)
Cutpoints class constructor.

Parameters
max_distance

[float] The maximum distance between any two lines for their cutpoint to be considered.
A good starting value would be 0.1 mm for small tracers and/or clean data, or 0.5 mm for
larger tracers and/or noisy data.

cutoffs
[list-like of length 6, optional] A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the cutpoints which fall
within these cutoff distances are considered. The default is None, in which case they are
automatically computed using pept.tracking.peptml.get_cutoffs.

append_indices
[bool, default False] If set to True, the indices of the individual LoRs that were used to
compute each cutpoint are also appended to the returned array.

Raises
ValueError

If cutoffs is not a one-dimensional array with values formatted as [min_x, max_x, min_y,
max_y, min_z, max_z].

5.3. Manual 137

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Methods

__init__(max_distance[, cutoffs, append_indices]) Cutpoints class constructor.
copy([deep]) Create a deep copy of an instance of this class, includ-

ing all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

append_indices

cutoffs

max_distance

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

138 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property max_distance

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property cutoffs

property append_indices

fit_sample(sample_lines)

pept.tracking.Minpoints

class pept.tracking.Minpoints(num_lines, max_distance, cutoffs=None, append_indices=False)
Bases: LineDataFilter

Transform LoRs (a pept.LineData instance) into minpoints (a pept.PointData instance) for clustering, in parallel.

Given a sample of lines, the minpoints are the minimum distance points (MDPs) for every possible combination
of num_lines lines that satisfy the following conditions:

1. Are within the cutoffs.

2. Are closer to all the constituent LoRs than max_distance.

Under typical usage, the Minpoints class is initialised with a pept.LineData instance, automatically calculating
the minpoints from the samples of lines. The Minpoints class inherits from pept.PointData, such that once the
cutpoints have been computed, all the methods from the parent class pept.PointData can be used on them (such
as visualisation functionality).

5.3. Manual 139



PEPT Documentation, Release 0.5.2

For more control over the operations, pept.tracking.peptml.find_minpoints can be used - it receives a generic
numpy array of LoRs (one ‘sample’) and returns a numpy array of cutpoints.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.tracking.peptml.HDBSCANClusterer
Efficient, parallel HDBSCAN-based clustering of cutpoints.

pept.scanners.ParallelScreens
Read in and initialise a pept.LineData instance from parallel screens PET/PEPT detectors.

pept.utilities.read_csv
Fast CSV file reading into numpy arrays.

Examples

Compute the minpoints for a LineData instance for all triplets of lines that are less than 0.1 from those lines:

>>> line_data = pept.LineData(example_data)
>>> minpts = peptml.Minpoints(line_data, 3, 0.1)

Compute the minpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.find_minpoints(sample, 3, 0.1)

Attributes
line_data

[instance of pept.LineData] The LoRs for which the cutpoints will be computed. It
must be an instance of pept.LineData.

num_lines
[int] The number of lines in each combination of LoRs used to compute the MDP. This
function considers every combination of num_lines from the input sample_lines. It must be
smaller or equal to the number of input lines sample_lines.

max_distance
[float] The maximum allowed distance between an MDP and its constituent lines. If any
distance from the MDP to one of its lines is larger than max_distance, the MDP is thrown
away. A good starting value would be 0.1 mm for small tracers and/or clean data, or 0.2 mm
for larger tracers and/or noisy data.

cutoffs
[list-like of length 6] A list (or equivalent) of the cutoff distances for every axis, formatted
as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the minpoints which fall within these
cutoff distances are considered. The default is None, in which case they are automatically
computed using pept.tracking.peptml.get_cutoffs.

__init__(num_lines, max_distance, cutoffs=None, append_indices=False)
Minpoints class constructor.

Parameters

140 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float


PEPT Documentation, Release 0.5.2

num_lines
[int] The number of lines in each combination of LoRs used to compute the MDP. This
function considers every combination of num_lines from the input sample_lines. It must
be smaller or equal to the number of input lines sample_lines.

max_distance
[float] The maximum allowed distance between an MDP and its constituent lines. If any
distance from the MDP to one of its lines is larger than max_distance, the MDP is thrown
away. A good starting value would be 0.1 mm for small tracers and/or clean data, or 0.2
mm for larger tracers and/or noisy data.

cutoffs
[list-like of length 6, optional] A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the minpoints which fall
within these cutoff distances are considered. The default is None, in which case they are
automatically computed using pept.tracking.peptml.get_cutoffs.

append_indices
[bool, default False] If set to True, the indices of the individual LoRs that were used to
compute each minpoint are also appended to the returned array.

Raises
TypeError

If line_data is not an instance of pept.LineData.

ValueError
If 2 <= num_lines <= len(sample_lines) is not satisfied.

ValueError
If cutoffs is not a one-dimensional array with values formatted as [min_x, max_x, min_y,
max_y, min_z, max_z].

Methods

__init__(num_lines, max_distance[, cutoffs, ...]) Minpoints class constructor.
copy([deep]) Create a deep copy of an instance of this class, includ-

ing all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 141

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Attributes

append_indices

cutoffs

max_distance

num_lines

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property num_lines

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

142 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property max_distance

property cutoffs

property append_indices

fit_sample(sample_lines)

pept.tracking.HDBSCAN

class pept.tracking.HDBSCAN(true_fraction, max_tracers=1)
Bases: PointDataFilter

Use HDBSCAN to cluster some pept.PointData and append a cluster label to each point.

Filter signature:

PointData -> HDBSCAN.fit_sample -> PointData

The only free parameter to select is the true_fraction, a relative measure of the ratio of inliers to outliers. A
noisy sample - e.g. first pass of clustering of cutpoints - may need a value of 0.15. A cleaned up dataset - e.g. a
second pass of clustering - can work with 0.6.

You can also set the maximum number of tracers visible at any one time in the system in max_tracers (default
1). This is simply an inverse scaling factor, but the true_fraction is quite robust with varying numbers of
tracers.

__init__(true_fraction, max_tracers=1)

Methods

__init__(true_fraction[, max_tracers])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample_points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 143



PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

fit_sample(sample_points)

144 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.tracking.FPI

class pept.tracking.FPI(w=3.0, r=0.4, lld_counts=0.0, verbose=False)
Bases: VoxelsFilter

FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers
in fast and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe flows at the Virginia Commonwealth
University. If you use this algorithm in your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle
tracking with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. 2017 Jan 21; 843:22-8.

Permission was granted by Dr. Cody Wiggins in March 2021 to publish his code in the pept library under the
GNU v3.0 license.

Two main methods are provided: fit_sample for tracking a single voxel space (i.e. a single pept.Voxels) and fit
which tracks all the samples encapsulated in a pept.VoxelData class in parallel.

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

pept.utilities.read_csv
Fast CSV file reading into numpy arrays.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

Examples

A typical workflow would involve reading LoRs from a file, creating a lazy VoxelData voxellised representation,
instantiating an FPI class, tracking the tracer locations from the LoRs, and plotting them.

>>> import pept
>>>
>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> voxels = pept.tracking.Voxelize((50, 50, 50)).fit(lors)
>>>
>>> fpi = pept.tracking.FPI(w = 3, r = 0.4)
>>> positions = fpi.fit(voxels) # this is a `pept.PointData` instance

A much more efficient approach would be to create a pept.Pipeline containing a voxelization step and then FPI:

>>> from pept.tracking import *
>>>
>>> pipeline = Voxelize((50, 50, 50)) + FPI() + Stack()
>>> positions = pipeline.fit(lors)

Finally, plotting results:

5.3. Manual 145



PEPT Documentation, Release 0.5.2

>>> from pept.plots import PlotlyGrapher
>>>
>>> grapher = PlotlyGrapher()
>>> grapher.add_points(positions)
>>> grapher.show()

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_timeseries(positions).show()

Attributes
w

[double] Search range to be used in local maxima calculation. Typical values for w are 2 -
5 (lower number for more particles or smaller particle separation).

r
[double] Fraction of peak value used as threshold. Typical values for r are usually between
0.3 and 0.6 (lower for more particles, higher for greater background noise)

lld_counts
[double, default 0] A secondary lld to prevent assigning local maxima to voxels with very
low values. The parameter lld_counts is not used much in practice - for most cases, it can be
set to zero.

__init__(w=3.0, r=0.4, lld_counts=0.0, verbose=False)
FPI class constructor.

Parameters
w

[double] Search range to be used in local maxima calculation. Typical values for w are 2
- 5 (lower number for more particles or smaller particle separation).

r
[double] Fraction of peak value used as threshold. Typical values for r are usually between
0.3 and 0.6 (lower for more particles, higher for greater background noise)

lld_counts
[double, default 0] A secondary lld to prevent assigning local maxima to voxels with
very low values. The parameter lld_counts is not used much in practice - for most cases, it
can be set to zero.

verbose
[bool, default False] Show extra information on class instantiation.

146 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False


PEPT Documentation, Release 0.5.2

Methods

__init__([w, r, lld_counts, verbose]) FPI class constructor.
copy([deep]) Create a deep copy of an instance of this class, includ-

ing all inner attributes.
fit(voxels[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(voxels) Use the FPI algorithm to locate a tracer from a single

voxellised space (i.e.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(voxels: Voxels)
Use the FPI algorithm to locate a tracer from a single voxellised space (i.e. from one sample of LoRs).

A sample of LoRs can be voxellised using the pept.Voxels.from_lines method before calling this function.

Parameters
voxels

[pept.Voxels] A single voxellised space (i.e. from a single sample of LoRs) for which
the tracers’ locations will be found using the FPI method.

Returns
locations

[numpy.ndarray or pept.PointData] The tracked locations found; if as_array is True,
they are returned as a NumPy array with columns [time, x, y, z, error_x, error_y, error_z].
If as_array is False, the points are returned in a pept.PointData for ease of visualisation.

Raises
TypeError

If voxels is not an instance of pept.Voxels (or subclass thereof).

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(voxels, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 147

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError


PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Trajectory Separation Algorithms

pept.tracking.Segregate(window, cut_distance) Segregate the intertwined points from multiple trajecto-
ries into individual paths.

pept.tracking.Reconnect(tmax, dmax[, ...]) Best-fit trajectory segment reconstruction based on time,
distance and arbitrary tracer signatures.

pept.tracking.Segregate

class pept.tracking.Segregate(window, cut_distance, min_trajectory_size=5,
max_time_interval=1.7976931348623157e+308)

Bases: Reducer

Segregate the intertwined points from multiple trajectories into individual paths.

Reducer signature:

pept.PointData -> Segregate.fit -> pept.PointData
list[pept.PointData] -> Segregate.fit -> pept.PointData

numpy.ndarray -> Segregate.fit -> pept.PointData

148 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

The points in point_data (a numpy array or pept.PointData) are used to construct a minimum spanning tree
in which every point can only be connected to points_window points around it - this “window” refers to the
points in the initial data array, sorted based on the time column; therefore, only points within a certain time-
frame can be connected. All edges (or “connections”) in the minimum spanning tree that are larger than trajec-
tory_cut_distance are removed (or “cut”) and the remaining connected “clusters” are deemed individual trajec-
tories if they contain more than min_trajectory_size points.

The trajectory indices (or labels) are appended to point_data. That is, for each data point (i.e. row) in point_data,
a label will be appended starting from 0 for the corresponding trajectory; a label of -1 represents noise. If
point_data is a numpy array, a new numpy array is returned; if it is a pept.PointData instance, a new instance is
returned.

This function uses single linkage clustering with a custom metric for spatio-temporal data to segregate trajectory
points. The single linkage clustering was optimised for this use-case: points are only connected if they are within
a certain points_window in the time-sorted input array. Sparse matrices are also used for minimising the memory
footprint.

See also:

Reconnect
Connect segregated trajectories based on tracer signatures.

PlotlyGrapher
Easy, publication-ready plotting of PEPT-oriented data.

Examples

A typical workflow would involve transforming LoRs into points using some tracking algorithm. These points
include all tracers moving through the system, being intertwined (e.g. for two tracers A and B, the point_data
array might have two entries for A, followed by three entries for B, then one entry for A, etc.). They can be
segregated based on position alone using this function; take for example two tracers that go downwards (below,
‘x’ is the position, and in parens is the array index at which that point is found).

`points`, numpy.ndarray, shape (10, 4), columns [time, x, y, z]:
x (1) x (2)
x (3) x (4)

x (5) x (7)
x (6) x (9)
x (8) x (10)

>>> import pept.tracking.trajectory_separation as tsp
>>> points_window = 10
>>> trajectory_cut_distance = 15 # mm
>>> segregated_trajectories = tsp.segregate_trajectories(
>>> points, points_window, trajectory_cut_distance
>>> )

`segregated_trajectories`, numpy.ndarray, shape (10, 5),
columns [time, x, y, z, trajectory_label]:

x (1, label = 0) x (2, label = 1)
x (3, label = 0) x (4, label = 1)
x (5, label = 0) x (7, label = 1)
x (6, label = 0) x (9, label = 1)
x (8, label = 0) x (10, label = 1)

5.3. Manual 149



PEPT Documentation, Release 0.5.2

Attributes
window

[int] Two points are “reachable” (i.e. they can be connected) if and only if they are within
points_window in the time-sorted input point_data. As the points from different trajectories
are intertwined (e.g. for two tracers A and B, the point_data array might have two entries
for A, followed by three entries for B, then one entry for A, etc.), this should optimally
be the largest number of points in the input array between two consecutive points on the
same trajectory. If points_window is too small, all points in the dataset will be unreachable.
Naturally, a larger time_window correponds to more pairs needing to be checked (and the
function will take a longer to complete).

cut_distance
[float] Once all the closest points are connected (i.e. the minimum spanning tree is con-
structed), separate all trajectories that are further apart than trajectory_cut_distance.

min_trajectory_size
[float, default 5] After the trajectories have been cut, declare all trajectories with fewer
points than min_trajectory_size as noise.

max_time_interval
[float, default np.finfo(float):obj:.max] Only connect points if the time difference
between their timestamps is smaller than max_time_interval. Setting added in pept-0.5.2.

__init__(window, cut_distance, min_trajectory_size=5, max_time_interval=1.7976931348623157e+308)

Methods

__init__(window, cut_distance[, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(points)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns

150 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


PEPT Documentation, Release 0.5.2

pept.PEPTObject subclass instance
The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Reconnect

class pept.tracking.Reconnect(tmax, dmax, column='label', num_points=10, **signatures)
Bases: Reducer

Best-fit trajectory segment reconstruction based on time, distance and arbitrary tracer signatures.

Reducer signature:

pept.PointData -> Segregate.fit -> pept.PointData
list[pept.PointData] -> Segregate.fit -> pept.PointData

numpy.ndarray -> Segregate.fit -> pept.PointData

After a trajectory segregation step (e.g. using Segregate), you may be left with multiple smaller trajectory
segments. Some trajectories can be reconstructed even when losing the tracers for a bit.

When a tracer is lost for less than tmax time and dmax distance, its trajectory segments are reconnected; if
multiple condidates are possible, the best fit is used.

5.3. Manual 151



PEPT Documentation, Release 0.5.2

Multiple tracer signatures can be used to improve the reconnection step; supply them as data column names and
difference thresholds, e.g. an extra keyword argument v = 1 will join trajectories whose difference in velocity
is smaller than 1 m/s.

The last num_points points on a segment are averaged before they are connected with the first num_points on
another segment.

New in pept-0.4.2

Examples

Reconnect segments that are closer than 1 second in time and 0.1 m apart:

>>> from pept.tracking import *
>>> trajectories = Reconnect(tmax = 1000, dmax = 100).fit(segments)

You can use the cluster_size (set by the Centroids filter) as a tracer signature; allow segments to be reconnected
if the difference in their cluster size is < 100:

>>> trajectories = Reconnect(1000, 100, cluster_size = 100).fit(segments)

And a velocity v difference < 0.1:

>>> Reconnect(1000, 100, cluster_size = 100, v = 0.1).fit(segments)

__init__(tmax, dmax, column='label', num_points=10, **signatures)

Methods

__init__(tmax, dmax[, column, num_points])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(points)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

152 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Time Of Flight Algorithms

pept.tracking.TimeOfFlight([...]) Compute the positron annihilation locations of each LoR
as given by the Time Of Flight (ToF) data of the two LoR
timestamps.

pept.tracking.CutpointsToF([max_distance, ...]) Compute cutpoints from all pairs of lines whose Time Of
Flight-predicted locations are closer than max_distance.

pept.tracking.GaussianDensity([sigma]) Append weights according to the Gaussian distribution
that best fits the samples of points.

5.3. Manual 153



PEPT Documentation, Release 0.5.2

pept.tracking.TimeOfFlight

class pept.tracking.TimeOfFlight(temporal_resolution=None, points=False)
Bases: LineDataFilter

Compute the positron annihilation locations of each LoR as given by the Time Of Flight (ToF) data of the two
LoR timestamps.

Filter signature:

LineData -> TimeOfFlight.fit_sample -> LineData (points = False)
LineData -> TimeOfFlight.fit_sample -> PointData (points = True)

Importantly, the input LineData must have at least 8 columns, formatted as [t1, x1, y1, z1, x2, y2, z2, t2] - notice
the different timestamps of the two LoR ends.

If points = False (default), the computed ToF points are saved as an extra attribute “tof” in the input LineData;
otherwise they are returned directly.

The temporal_resolution should be set to the FWHM of the temporal resolution in the LoR timestamps, in self-
consistent units of measure (e.g. m / s or mm / ms, but not mm / s). If it is set, the “temporal_resolution” and
“spatial_resolution” extra attributes are set on the ToF points.

New in pept-0.4.2

Examples

Generate 10 random LoRs between (-100, 100) mm and ms with 8 columns for the ToF format.

>>> import numpy as np
>>> import pept

>>> rng = np.random.default_rng(0)
>>> lors = pept.LineData(
>>> rng.uniform(-100, 100, (10, 8)),
>>> columns = ["t1", "x1", "y1", "z1", "x2", "y2", "z2", "t2"],
>>> )
>>> lors
pept.LineData (samples: 1)
--------------------------
sample_size = 10
overlap = 0
lines =
(rows: 10, columns: 8)
[[ 57.4196615 -52.1261114 ... -9.93212667 59.26485406]
[-53.8715582 -89.59573979 ... -40.26077344 34.39897559]
...
[ 51.59020047 2.55174465 ... -31.13800424 -13.94025361]
[ 93.21241616 12.44636845 ... -75.08905883 -42.3338486 ]]

columns = ['t1', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2', 't2']
attrs = {}

Compute Time of Flight annihilation locations from the two timestamps in the data above. Assume a temporal
resolution of 100 ps - be careful to use self-consistent units; in this case we are using mm and ms:

154 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> from pept.tracking import *

>>> temporal_resolution = 100e-12 * 1000 # ms
>>> lors_tof = TimeOfFlight(temporal_resolution).fit_sample(lors)
>>> lors_tof
pept.LineData (samples: 1)
--------------------------
sample_size = 10
overlap = 0
lines =
(rows: 10, columns: 8)
[[ 57.4196615 -52.1261114 ... -9.93212667 59.26485406]
[-53.8715582 -89.59573979 ... -40.26077344 34.39897559]
...
[ 51.59020047 2.55174465 ... -31.13800424 -13.94025361]
[ 93.21241616 12.44636845 ... -75.08905883 -42.3338486 ]]

columns = ['t1', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2', 't2']
attrs = {
'tof': pept.PointData (samples: 1)

---------------------------
sample_...
}

>>> lors_tof.attrs["tof"]
pept.PointData (samples: 1)
---------------------------
sample_size = 10
overlap = 0
points =
(rows: 10, columns: 4)
[[ 5.64970655e+01 -3.22092074e+07 2.41767704e+08 -1.30428351e+08]
[-9.80068250e+01 -2.48775932e+09 -1.12904720e+10 -6.43480969e+09]
...
[ 1.88249731e+01 3.34819602e+09 -8.78848458e+09 2.83529405e+09]
[ 2.54392837e+01 1.90343279e+10 -1.92717662e+09 -6.84078611e+09]]

columns = ['t', 'x', 'y', 'z']
attrs = {
'temporal_resolution': 1.0000000000000001e-07
'spatial_resolution': 29.9792458

}

Alternatively, you can extract only the ToF points directly:

>>> tof = TimeOfFlight(temporal_resolution, points = True).fit_sample(lors)
>>> tof
pept.PointData (samples: 1)
---------------------------
sample_size = 10
overlap = 0
points =
(rows: 10, columns: 4)
[[ 5.64970655e+01 -3.22092074e+07 2.41767704e+08 -1.30428351e+08]

(continues on next page)

5.3. Manual 155



PEPT Documentation, Release 0.5.2

(continued from previous page)

[-9.80068250e+01 -2.48775932e+09 -1.12904720e+10 -6.43480969e+09]
...
[ 1.88249731e+01 3.34819602e+09 -8.78848458e+09 2.83529405e+09]
[ 2.54392837e+01 1.90343279e+10 -1.92717662e+09 -6.84078611e+09]]

columns = ['t', 'x', 'y', 'z']
attrs = {
'temporal_resolution': 1.0000000000000001e-07
'spatial_resolution': 29.9792458

}

__init__(temporal_resolution=None, points=False)

Methods

__init__([temporal_resolution, points])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample: LineData)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

156 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.CutpointsToF

class pept.tracking.CutpointsToF(max_distance=None, cutoffs=None, append_indices=False,
cutpoints_only=False)

Bases: LineDataFilter

Compute cutpoints from all pairs of lines whose Time Of Flight-predicted locations are closer than max_distance.

Filter signature:

LineData -> CutpointsToF.fit_sample -> PointData

If the TimeOfFlight filter was used and a temporal resolution was specified (as a FWHM), then max_distance
is automatically inferred as the minimum between 2 * “spatial_resolution” and the dimension-wise standard
deviation of the input points.

The cutoffs parameter may be set as [xmin, xmax, ymin, ymax, zmin, zmax] for a minimum bounding box outside
of which cutpoints are discarded. Otherwise it is automatically set to the minimum bounding box containing all
input LoRs.

If append_indices = True, two extra columns are appended to the result as “line_index1” and “line_index2”
containing the indices of the LoRs that produced each cutpoint; an extra attribute “_lines” is also set to the input
LineData.

5.3. Manual 157



PEPT Documentation, Release 0.5.2

If cutpoints_only = False (default), the Time Of Flight-predicted positron annihilation locations are also ap-
pended to the returned points.

New in pept-0.4.2

See also:

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.tracking.HDBSCAN
Efficient, HDBSCAN-based clustering of (cut)points.

pept.read_csv
Fast CSV file reading into numpy arrays.

Examples

Make sure to use the TimeOfFlight filter to compute to ToF annihilation locations; if you specify a temporal
resolution, the max_distance parameter is automatically computed:

>>> import pept
>>> from pept.tracking import *

>>> line_data = pept.LineData(example_tof_data)
>>> line_data_tof = TimeOfFlight(100e-9).fit_sample(line_data)
>>> cutpoints_tof = CutpointsToF().fit_sample(line_data_tof)

Alternatively, set max_distance yourself:

>>> line_data = pept.LineData(example_tof_data)
>>> line_data_tof = TimeOfFlight().fit_sample(line_data)
>>> cutpoints_tof = CutpointsToF(5.0).fit_sample(line_data_tof)

__init__(max_distance=None, cutoffs=None, append_indices=False, cutpoints_only=False)

Methods

__init__([max_distance, cutoffs, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

158 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Attributes

append_indices

cutoffs

max_distance

property max_distance

property cutoffs

property append_indices

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

fit_sample(sample_lines: LineData)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 159



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.GaussianDensity

class pept.tracking.GaussianDensity(sigma=None)
Bases: Filter

Append weights according to the Gaussian distribution that best fits the samples of points.

Filter signature:

PointData -> GaussianDensity.fit_sample -> PointData
numpy.ndarray -> GaussianDensity.fit_sample -> PointData

list[PointData] -> GaussianDensity.fit_sample -> list[PointData]

This is treated as an optimisation problem: find the 3D location that maximises the sum of Probability Distribu-
tions (PDF) centered at each point.

Given N points p_1, p_2, ..., p_N:

N
maximise sum( exp( -0.5 * |x - p_i|^2 / sigma^2 ) )

x i

Each point is then assigned a weight corresponding to its PDF - i.e. the exponential part - saved in the weight
column.

Sigma controls the standard deviation of the Gaussian distribution centred at each point; this corresponds to
the relative uncertainty in each point’s location. For TimeOfFlight data, leave sigma = None and it will be
computed from the “spatial_resolution” attribute.

You can use Centroids afterwards to compute the weighted centroid, i.e. where the tracer is. For multiple
particle tracking (or just more robustness to noise) you can use HDBSCAN + SplitLabels beforehand.

New in pept-0.4.2

__init__(sigma=None)

160 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Methods

__init__([sigma])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 161



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

fit_sample(points)

Post Processing Algorithms

pept.tracking.Velocity(window[, degree, ...]) Append the dimension-wise or absolute velocity to sam-
ples of points using a 2D fitted polynomial in a rolling
window mode.

pept.tracking.Velocity

class pept.tracking.Velocity(window, degree=2, absolute=False)
Bases: PointDataFilter

Append the dimension-wise or absolute velocity to samples of points using a 2D fitted polynomial in a rolling
window mode.

Filter signature:

PointData -> Velocity.fit_sample -> PointData

If Numba is installed, a fast, natively-compiled algorithm is used.

If absolute = False, the “vx”, “vy” and “vz” columns are appended. If absolute = True, then the “v” column is
appended.

__init__(window, degree=2, absolute=False)

162 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Methods

__init__(window[, degree, absolute])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 163



PEPT Documentation, Release 0.5.2

filepath
[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Post Processing (pept.processing)

The PEPT-oriented post-processing suite, including occupancy grid, vector velocity fields, etc.

This module contains fast, robust functions that operate on PEPT-like data and integrate with the pept library’s base
classes.

Probability / Residence Distributions

pept.processing.DynamicProbability2D(...[, ...]) Compute the 2D probability distribution of some tracer
quantity (eg velocity in each cell).

pept.processing.DynamicProbability3D(...[, ...]) Compute the 3D probability distribution of some tracer
quantity (eg velocity in each cell).

pept.processing.ResidenceDistribution2D(diameter)Compute the 2D residence distribution of some tracer
quantity (eg time spent in each cell).

pept.processing.ResidenceDistribution3D(diameter)Compute the 3D residence distribution of some tracer
quantity (eg time spent in each cell).

pept.processing.DynamicProbability2D

class pept.processing.DynamicProbability2D(diameter, column, dimensions='xy', resolution=(512, 512),
xlim=None, ylim=None, max_workers=None,
verbose=True)

Bases: Reducer

Compute the 2D probability distribution of some tracer quantity (eg velocity in each cell).

Reducer signature:

PointData -> DynamicProbability2D.fit -> Pixels
list[PointData] -> DynamicProbability2D.fit -> Pixels
numpy.ndarray -> DynamicProbability2D.fit -> Pixels

This reducer calculates the average value of the tracer quantity in each cell of a 2D pixel grid; it uses the full
projected tracer area for the pixelization step, so the distribution is accurate for arbitrarily fine resolutions.

Parameters

164 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

diameter
[float] The diameter of the imaged tracer.

column
[str or int] The PointData column used to compute the probability distribution, given as
a name (str) or index (int).

dimensions
[str or list[int], default “xy”] The tracer coordinates used to rasterize its trajectory,
given as a string (e.g. “xy” projects the points onto the XY plane) or a list with two column
indices (e.g. [1, 3] for XZ).

resolution
[tuple[int, int], default (512, 512)] The number of pixels used for the rasterization grid
in the X and Y dimensions.

xlim
[tuple[float, float], optional] The physical limits in the X dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

ylim
[tuple[float, float], optional] The physical limits in the y dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

max_workers
[int, optional] The maximum number of workers (threads, processes or ranks) to use by the
parallel executor; if 1, it is sequential (and produces the clearest error messages should they
happen). If unset, the os.cpu_count() is used.

verbose
[bool or str default True] If True, time the computation and print the state of the execu-
tion.

Examples

Compute the velocity probability distribution of a single tracer trajectory having a column named “v” corre-
sponding to the tracer velocity:

>>> trajectories = pept.load(...)
>>> pixels_vel = DynamicProbability2D(1.2, "v", "xy").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_pixels(pixels_vel).show()

For multiple tracer trajectories, you can use Segregate then SplitAll('label') before calling this reducer
to rasterize each trajectory separately:

>>> vel_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> DynamicProbability2D(1.2, "v", "xy")
>>> ])
>>> pixels_vel = vel_pipeline.fit(trajectories)

5.3. Manual 165

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

__init__(diameter, column, dimensions='xy', resolution=(512, 512), xlim=None, ylim=None,
max_workers=None, verbose=True)

Methods

__init__(diameter, column[, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

166 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.DynamicProbability3D

class pept.processing.DynamicProbability3D(diameter, column, dimensions='xyz', resolution=(50, 50,
50), xlim=None, ylim=None, zlim=None,
max_workers=None, verbose=True)

Bases: Reducer

Compute the 3D probability distribution of some tracer quantity (eg velocity in each cell).

Reducer signature:

PointData -> DynamicProbability3D.fit -> Voxels
list[PointData] -> DynamicProbability3D.fit -> Voxels
numpy.ndarray -> DynamicProbability3D.fit -> Voxels

This reducer calculates the average value of the tracer quantity in each cell of a 3D voxel grid; it uses the full
projected tracer area for the voxelization step, so the distribution is accurate for arbitrarily fine resolutions.

Parameters
diameter

[float] The diameter of the imaged tracer.

column
[str or int] The PointData column used to compute the probability distribution, given as
a name (str) or index (int).

dimensions
[str or list[int], default “xyz”] The tracer coordinates used to rasterize its trajectory,
given as a string (e.g. “xyz” or “zyx”) or a list with three column indices (e.g. [1, 2, 3] for
XYZ).

resolution
[tuple[int, int, int], default (50, 50, 50)] The number of pixels used for the rasteriza-
tion grid in the X, Y, Z dimensions.

xlim
[tuple[float, float], optional] The physical limits in the X dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

ylim
[tuple[float, float], optional] The physical limits in the y dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

zlim
[tuple[float, float], optional] The physical limits in the z dimension of the pixel grid. If
unset, it is automatically computed to contain all tracer positions (default).

5.3. Manual 167

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float


PEPT Documentation, Release 0.5.2

max_workers
[int, optional] The maximum number of workers (threads, processes or ranks) to use by the
parallel executor; if 1, it is sequential (and produces the clearest error messages should they
happen). If unset, the os.cpu_count() is used.

verbose
[bool or str default True] If True, time the computation and print the state of the execu-
tion.

Examples

Compute the velocity probability distribution of a single tracer trajectory having a column named “v” corre-
sponding to the tracer velocity:

>>> trajectories = pept.load(...)
>>> voxels_vel = DynamicProbability3D(1.2, "v").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher
>>> PlotlyGrapher().add_voxels(voxels_vel).show()

For multiple tracer trajectories, you can use Segregate then SplitAll('label') before calling this reducer
to rasterize each trajectory separately:

>>> vel_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> DynamicProbability3D(1.2, "v")
>>> ])
>>> voxels_vel = vel_pipeline.fit(trajectories)

__init__(diameter, column, dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None,
max_workers=None, verbose=True)

Methods

__init__(diameter, column[, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

168 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 169



PEPT Documentation, Release 0.5.2

pept.processing.ResidenceDistribution2D

class pept.processing.ResidenceDistribution2D(diameter, column='t', dimensions='xy', resolution=(512,
512), xlim=None, ylim=None, max_workers=None,
verbose=True)

Bases: Reducer

Compute the 2D residence distribution of some tracer quantity (eg time spent in each cell).

Reducer signature:

PointData -> ResidenceDistribution2D.fit -> Pixels
list[PointData] -> ResidenceDistribution2D.fit -> Pixels
numpy.ndarray -> ResidenceDistribution2D.fit -> Pixels

This reducer calculates the cumulative value of the tracer quantity in each cell of a 2D pixel grid; it uses the full
projected tracer area for the pixelization step, so the distribution is accurate for arbitrarily fine resolutions.

Parameters
diameter

[float] The diameter of the imaged tracer.

column
[str or int, default “t”] The PointData column used to compute the residence distribution,
given as a name (str) or index (int).

dimensions
[str or list[int], default “xy”] The tracer coordinates used to rasterize its trajectory,
given as a string (e.g. “xy” projects the points onto the XY plane) or a list with two column
indices (e.g. [1, 3] for XZ).

resolution
[tuple[int, int], default (512, 512)] The number of pixels used for the rasterization grid
in the X and Y dimensions.

xlim
[tuple[float, float], optional] The physical limits in the X dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

ylim
[tuple[float, float], optional] The physical limits in the y dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

max_workers
[int, optional] The maximum number of workers (threads, processes or ranks) to use by the
parallel executor; if 1, it is sequential (and produces the clearest error messages should they
happen). If unset, the os.cpu_count() is used.

verbose
[bool or str default True] If True, time the computation and print the state of the execu-
tion.

170 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

Examples

Compute the residence time distribution of a single tracer trajectory:

>>> trajectories = pept.load(...)
>>> pixels_rtd = ResidenceDistribution2D(1.2, "t", "xy").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_pixels(pixels_rtd).show()

For multiple tracer trajectories, you can use Segregate then SplitAll('label') before calling this reducer
to rasterize each trajectory separately:

>>> rtd_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> ResidenceDistribution2D(1.2, "t", "xy")
>>> ])
>>> pixels_rtd = rtd_pipeline.fit(trajectories)

__init__(diameter, column='t', dimensions='xy', resolution=(512, 512), xlim=None, ylim=None,
max_workers=None, verbose=True)

Methods

__init__(diameter[, column, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns

5.3. Manual 171



PEPT Documentation, Release 0.5.2

pept.PEPTObject subclass instance
The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.ResidenceDistribution3D

class pept.processing.ResidenceDistribution3D(diameter, column='t', dimensions='xyz', resolution=(50,
50, 50), xlim=None, ylim=None, zlim=None,
max_workers=None, verbose=True)

Bases: Reducer

Compute the 3D residence distribution of some tracer quantity (eg time spent in each cell).

Reducer signature:

PointData -> ResidenceDistribution3D.fit -> Pixels
list[PointData] -> ResidenceDistribution3D.fit -> Pixels
numpy.ndarray -> ResidenceDistribution3D.fit -> Pixels

This reducer calculates the cumulative value of the tracer quantity in each cell of a 3D voxel grid; it uses the full
projected tracer area for the voxelization step, so the distribution is accurate for arbitrarily fine resolutions.

Parameters

172 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

diameter
[float] The diameter of the imaged tracer.

column
[str or int] The PointData column used to compute the probability distribution, given as
a name (str) or index (int).

dimensions
[str or list[int], default “xyz”] The tracer coordinates used to rasterize its trajectory,
given as a string (e.g. “xyz” or “zyx”) or a list with three column indices (e.g. [1, 2, 3] for
XYZ).

resolution
[tuple[int, int, int], default (50, 50, 50)] The number of pixels used for the rasteriza-
tion grid in the X, Y, Z dimensions.

xlim
[tuple[float, float], optional] The physical limits in the X dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

ylim
[tuple[float, float], optional] The physical limits in the y dimension of the pixel grid.
If unset, it is automatically computed to contain all tracer positions (default).

zlim
[tuple[float, float], optional] The physical limits in the z dimension of the pixel grid. If
unset, it is automatically computed to contain all tracer positions (default).

max_workers
[int, optional] The maximum number of workers (threads, processes or ranks) to use by the
parallel executor; if 1, it is sequential (and produces the clearest error messages should they
happen). If unset, the os.cpu_count() is used.

verbose
[bool or str default True] If True, time the computation and print the state of the execu-
tion.

Examples

Compute the residence time distribution of a single tracer trajectory:

>>> trajectories = pept.load(...)
>>> voxels_rtd = ResidenceDistribution3D(1.2, "t").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher
>>> PlotlyGrapher().add_voxels(voxels_rtd).show()

For multiple tracer trajectories, you can use Segregate then SplitAll('label') before calling this reducer
to rasterize each trajectory separately:

>>> rtd_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> ResidenceDistribution3D(1.2, "t")

(continues on next page)

5.3. Manual 173

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

(continued from previous page)

>>> ])
>>> voxels_rtd = rtd_pipeline.fit(trajectories)

__init__(diameter, column='t', dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None,
zlim=None, max_workers=None, verbose=True)

Methods

__init__(diameter[, column, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

174 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Vector Grids

pept.processing.VectorField2D(diameter[, ...]) Compute a 2D vector field - effectively two 2D grids
computed from two columns, for example X and Y ve-
locities.

pept.processing.VectorGrid2D(xpixels, ypixels) Object produced by VectorField2D storing 2 grids of
voxels xpixels, ypixels, for example velocity vector fields
/ quiver plots.

pept.processing.VectorField3D(diameter[, ...]) Compute a 3D vector field - effectively three 3D grids
computed from three columns, for example X, Y and Z
velocities.

pept.processing.VectorGrid3D(xvoxels, ...) Object produced by VectorField3D storing 3 grids of
voxels xvoxels, yvoxels, zvoxels, for example velocity
vector fields / quiver plots.

pept.processing.VectorField2D

class pept.processing.VectorField2D(diameter, columns=['vx', 'vy'], dimensions='xy', resolution=(50, 50),
xlim=None, ylim=None, max_workers=None, verbose=True)

Bases: Reducer

Compute a 2D vector field - effectively two 2D grids computed from two columns, for example X and Y velocities.

Reducer signature:

PointData -> VectorField2D.fit -> VectorGrid2D
list[PointData] -> VectorField2D.fit -> VectorGrid2D
numpy.ndarray -> VectorField2D.fit -> VectorGrid2D

5.3. Manual 175



PEPT Documentation, Release 0.5.2

Examples

Compute a velocity vector field in the Y and Z dimensions (velocities were first calculated using pept.
tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField2D(0.6, ["vy", "vz"], "yz").fit(trajectories)
>>> field
VectorGrid2D(xpixels, ypixels)

Create a quiver plot using Plotly (may be a bit slow):

>>> scaling = 16
>>> fig = field.quiver(scaling)
>>> fig.show()

Create a 2D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

__init__(diameter, columns=['vx', 'vy'], dimensions='xy', resolution=(50, 50), xlim=None, ylim=None,
max_workers=None, verbose=True)

Methods

__init__(diameter[, columns, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns

176 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.PEPTObject subclass instance
The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.VectorGrid2D

class pept.processing.VectorGrid2D(xpixels: Pixels, ypixels: Pixels)
Bases: object

Object produced by VectorField2D storing 2 grids of voxels xpixels, ypixels, for example velocity vector fields
/ quiver plots.

Examples

Compute a velocity vector field in the Y and Z dimensions (velocities were first calculated using pept.
tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField2D(0.6, ["vy", "vz"], "yz").fit(trajectories)
>>> field
VectorGrid2D(xpixels, ypixels)

5.3. Manual 177

https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

Create a quiver plot using Plotly (may be a bit slow):

>>> scaling = 16
>>> fig = field.quiver(scaling)
>>> fig.show()

Create a 2D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

__init__(xpixels: Pixels, ypixels: Pixels)

Methods

__init__(xpixels, ypixels)

quiver([factor])

vectors([factor])

vectors(factor=1)

quiver(factor=1)

pept.processing.VectorField3D

class pept.processing.VectorField3D(diameter, columns=['vx', 'vy', 'vz'], dimensions='xyz', resolution=(50,
50, 50), xlim=None, ylim=None, zlim=None, max_workers=None,
verbose=True)

Bases: Reducer

Compute a 3D vector field - effectively three 3D grids computed from three columns, for example X, Y and Z
velocities.

Reducer signature:

PointData -> VectorField3D.fit -> VectorGrid3D
list[PointData] -> VectorField3D.fit -> VectorGrid3D
numpy.ndarray -> VectorField3D.fit -> VectorGrid3D

178 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Compute a 3D velocity vector field (velocities were first calculated using pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField3D(0.6).fit(trajectories)
>>> field
VectorGrid3D(xvoxels, yvoxels, zvoxels)

Create a 3D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

__init__(diameter, columns=['vx', 'vy', 'vz'], dimensions='xyz', resolution=(50, 50, 50), xlim=None,
ylim=None, zlim=None, max_workers=None, verbose=True)

Methods

__init__(diameter[, columns, dimensions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 179



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.VectorGrid3D

class pept.processing.VectorGrid3D(xvoxels: Voxels, yvoxels: Voxels, zvoxels: Voxels)
Bases: object

Object produced by VectorField3D storing 3 grids of voxels xvoxels, yvoxels, zvoxels, for example velocity
vector fields / quiver plots.

Examples

Compute a 3D velocity vector field (velocities were first calculated using pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField3D(0.6).fit(trajectories)
>>> field
VectorGrid3D(xvoxels, yvoxels, zvoxels)

Create a 3D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

180 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

__init__(xvoxels: Voxels, yvoxels: Voxels, zvoxels: Voxels)

Methods

__init__(xvoxels, yvoxels, zvoxels)

vectors([factor])

vectors(factor=1)

Mixing Quantification

pept.processing.LaceyColors(p1, p2[, ax1, ...]) Compute Lacey-like mixing image, with streamlines
passing through plane 1 being split into Red and Blue
tracers, then evaluated into RGB pixels at a later point in
plane 2.

pept.processing.LaceyColorsLinear(directory,
...)

Apply the LaceyColors mixing algorithm at
num_divisions equidistant points between p1 and
p2, saving images at each step in directory.

pept.processing.RelativeDeviations(p1, p2[,
...])

Compute a Lagrangian mixing measure - the changes in
tracer distances to a point P1 as they pass through an "in-
let" plane and another point P2 when reaching an "outlet"
plane.

pept.processing.RelativeDeviationsLinear(...) Apply the RelativeDeviations mixing algorithm at
num_divisions equidistant points between p1 and p2,
saving histogram images at each step in directory.

pept.processing.AutoCorrelation([lag, ...]) Compute autocorrelation of multiple measures (eg YZ
velocities) as a function of a lagging variable (eg time).

pept.processing.SpatialProjections(...[, ...]) Project multiple tracer passes onto a moving 2D plane
along a given direction between start and end coordi-
nates, saving each frame in directory.

pept.processing.LaceyColors

class pept.processing.LaceyColors(p1, p2, ax1=None, ax2=None, basis1=None, basis2=None, xlim=None,
ylim=None, max_distance=10, resolution=(8, 8))

Bases: Reducer

Compute Lacey-like mixing image, with streamlines passing through plane 1 being split into Red and Blue
tracers, then evaluated into RGB pixels at a later point in plane 2.

Intuitively, red and blue pixels will contain unmixed streamlines, while purple pixels will indicate mixing.

Reducer signature:

PointData -> LaceyColors.fit -> (height, width, 3) pept.Voxels
list[PointData] -> LaceyColors.fit -> (height, width, 3) pept.Voxels
list[np.ndarray] -> LaceyColors.fit -> (height, width, 3) pept.Voxels

5.3. Manual 181



PEPT Documentation, Release 0.5.2

Each sample in the input `PointData` is treated as a separate streamline / tracer pass. You can group
passes using `Segregate + GroupBy(“label”)`.
The first plane where tracers are split into Red and Blue streamlines is defined by a point p1 and direction axis
ax1. The point `p1` should be the middle of the pipe.

The second plane where mixing is evaluated is similarly defined by p2 and ax2. The point `p2` should be the
middle of the volume / pipe.

If the direction vectors ax1 and ax2 are undefined (None), the tracers are assumed to follow a straight line between
p1 and p2.

The max_distance parameter defines the maximum distance allowed between a point and a plane to be considered
part of it. The resolution defines the number of pixels in the height and width of the resulting image.

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the LaceyColors reducer can be used to create an image of the mixing between the pipe entrance and exit:

>>> from pept.processing import LaceyColors
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> lacey_image = LaceyColors(entrance, exit).fit(streamlines)
>>> print(lacey_image.voxels) # RGB channels of image
(8, 8, 3)

Now the image can be visualised e.g. with Plotly:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_image(lacey_image).show()

__init__(p1, p2, ax1=None, ax2=None, basis1=None, basis2=None, xlim=None, ylim=None,
max_distance=10, resolution=(8, 8))

182 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Methods

__init__(p1, p2[, ax1, ax2, basis1, basis2, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

5.3. Manual 183



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.LaceyColorsLinear

class pept.processing.LaceyColorsLinear(directory, p1, p2, xlim=None, ylim=None, num_divisions=50,
max_distance=10, resolution=(8, 8), height=1000, width=1000,
prefix='frame')

Bases: Reducer

Apply the LaceyColors mixing algorithm at num_divisions equidistant points between p1 and p2, saving images
at each step in directory.

Reducer signature:

PointData -> LaceyColors.fit -> (height, width, 3) np.ndarray
list[PointData] -> LaceyColors.fit -> (height, width, 3) np.ndarray
list[np.ndarray] -> LaceyColors.fit -> (height, width, 3) np.ndarray

For details about the mixing algorithm itself, check the LaceyColors documentation.

The generated images (saved in directory with height x width pixels) can be stitched into a video using
pept.plots.make_video.

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the LaceyColorsLinear reducer can be used to create images of the mixing between the pipe entrance and
exit:

184 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> from pept.processing import LaceyColorsLinear
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> LaceyColorsLinear(
>>> directory = "lacey", # Creates directory and saves images there
>>> p1 = entrance,
>>> p2 = exit,
>>> ).fit(streamlines)

Now the directory “lacey” was created inside your current working folder, and all Lacey images saved
there as “frame0000.png”, “frame0001.png”, etc. You can stitch all images together into a video using
pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video("lacey/frame*.png", output = "lacey/video.avi")

__init__(directory, p1, p2, xlim=None, ylim=None, num_divisions=50, max_distance=10, resolution=(8, 8),
height=1000, width=1000, prefix='frame')

Methods

__init__(directory, p1, p2[, xlim, ylim, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

5.3. Manual 185



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.RelativeDeviations

class pept.processing.RelativeDeviations(p1, p2, ax1=None, ax2=None, max_distance=10,
histogram=True, **kwargs)

Bases: Reducer

Compute a Lagrangian mixing measure - the changes in tracer distances to a point P1 as they pass through an
“inlet” plane and another point P2 when reaching an “outlet” plane.

A deviation is computed for each tracer trajectory, yielding a range of deviations that can e.g be histogrammed
(default). Intuitively, mixing is stronger if this distribution of deviations is wider.

Reducer signature:

If ``histogram = True`` (default)
PointData -> LaceyColors.fit -> plotly.graph_objs.Figure

list[PointData] -> LaceyColors.fit -> plotly.graph_objs.Figure
list[np.ndarray] -> LaceyColors.fit -> plotly.graph_objs.Figure

If ``histogram = False`` (return deviations)
PointData -> LaceyColors.fit -> (N,) np.ndarray

list[PointData] -> LaceyColors.fit -> (N,) np.ndarray
list[np.ndarray] -> LaceyColors.fit -> (N,) np.ndarray

186 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Each sample in the input `PointData` is treated as a separate streamline / tracer pass. You can group
passes using `Segregate + GroupBy(“label”)`.
The first plane where the distances from tracers to a point p1 is defined by the point p1 and direction axis ax1.
The point `p1` should be the middle of the pipe.

The second plane where relative distances are evaluated is similarly defined by p2 and ax2. The point `p2`
should be the middle of the volume / pipe.

If the direction vectors ax1 and ax2 are undefined (None), the tracers are assumed to follow a straight line between
p1 and p2.

The max_distance parameter defines the maximum distance allowed between a point and a plane to be considered
part of it. The resolution defines the number of pixels in the height and width of the resulting image.

The following attributes are always set. A Plotly figure is only generated and returned if histogram = True
(default).

The extra keyword arguments **kwargs are passed to the histogram creation routine pept.plots.histogram. You
can e.g. set the YAxis limits by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the RelativeDeviations reducer can be used to create a histogram of tracer deviations due to mixing:

>>> from pept.processing import RelativeDeviations
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> fig = RelativeDeviations(entrance, exit).fit(streamlines)
>>> fig.show()

The deviations themselves can be extracted directly for further processing:

>>> mixing_algorithm = RelativeDeviations(entrance, exit, histogram=False)
>>> mixing_algorithm.fit(streamlines)

5.3. Manual 187



PEPT Documentation, Release 0.5.2

>>> deviations = mixing_algorithm.deviations
>>> inlet_points = mixing_algorithm.points1
>>> outlet_points = mixing_algorithm.points2

Attributes
points1

[pept.PointData] The tracer points selected at the inlet around p1.

points2
[pept.PointData] The tracer points selected at the outlet around p2.

deviations
[(N,) np.ndarray] The vector of tracer deviations for each tracer pass in points1 and points2.

__init__(p1, p2, ax1=None, ax2=None, max_distance=10, histogram=True, **kwargs)

Methods

__init__(p1, p2[, ax1, ax2, max_distance, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

188 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.RelativeDeviationsLinear

class pept.processing.RelativeDeviationsLinear(directory, p1, p2, num_divisions=50,
max_distance=10, height=1000, width=2000,
prefix='frame', **kwargs)

Bases: Reducer

Apply the RelativeDeviations mixing algorithm at num_divisions equidistant points between p1 and p2, saving
histogram images at each step in directory.

Reducer signature:

PointData -> LaceyColors.fit -> plotly.graph_objs.Figure
list[PointData] -> LaceyColors.fit -> plotly.graph_objs.Figure
list[np.ndarray] -> LaceyColors.fit -> plotly.graph_objs.Figure

For details about the mixing algorithm itself, check the RelativeDeviations documentation.

This algorithm saves a rich set of data:

• Individual histograms for each point along P1-P2 are saved in the given directory.

• A Plotly figure of computed statistics is returned, including the deviations’ mean, standard deviation, skew-
ness and kurtosis.

• The raw data is saved as object attributes (see below).

5.3. Manual 189



PEPT Documentation, Release 0.5.2

The generated images (saved in directory with height x width pixels) can be stitched into a video using
pept.plots.make_video.

The extra keyword arguments **kwargs are passed to the histogram creation routine pept.plots.histogram. You
can e.g. set the YAxis limits by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the RelativeDeviationsLinear reducer can be used to create images of the mixing between the pipe entrance
and exit:

>>> from pept.processing import RelativeDeviationsLinear
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> summary_fig = RelativeDeviationsLinear(
>>> directory = "deviations", # Creates directory to save images
>>> p1 = entrance,
>>> p2 = exit,
>>> ).fit(streamlines)
>>> summary_fig.show() # Summary statistics: mean, std, etc.

Now the directory “deviations” was created inside your current working folder, and all relative deviation his-
tograms were saved there as “frame0000.png”, “frame0001.png”, etc. You can stitch all images together into a
video using pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video(
>>> "deviations/frame*.png",
>>> output = "deviations/video.avi"
>>> )

The raw deviations and statistics can also be extracted directly:

>>> mixing_algorithm = RelativeDeviationsLinear(
>>> directory = "deviations", # Creates directory to save images

(continues on next page)

190 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

(continued from previous page)

>>> p1 = entrance,
>>> p2 = exit,
>>> )
>>> fig = mixing_algorithm.fit(streamlines)
>>> fig.show()

>>> deviations = mixing_algorithm.deviations
>>> mean = mixing_algorithm.mean
>>> std = mixing_algorithm.std
>>> skew = mixing_algorithm.skew
>>> kurtosis = mixing_algorithm.kurtosis

Attributes
deviations

[list[(N,) np.ndarray]] A list of deviations computed by RelativeDeviations at each point
between P1 and P2.

mean
[(N,) np.ndarray] A vector of mean tracer deviations at each point between P1 and P2.

std
[(N,) np.ndarray] A vector of the tracer deviations’ standard deviation at each point be-
tween P1 and P2.

skew
[(N,) np.ndarray] A vector of the tracer deviations’ adjusted skewness at each point be-
tween P1 and P2. A normal distribution has a value of 0; positive values indicate a longer
right distribution tail; negative values indicate a heavier left tail.

kurtosis
[(N,) np.ndarray] A vector of the tracer deviations’ Fisher kurtosis at each point between P1
and P2. A normal distribution has a value of 0; positive values indicate a “thin” distribution;
negative values indicate a heavy, wide distribution.

__init__(directory, p1, p2, num_divisions=50, max_distance=10, height=1000, width=2000, prefix='frame',
**kwargs)

Methods

__init__(directory, p1, p2[, num_divisions, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

5.3. Manual 191

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

192 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

pept.processing.AutoCorrelation

class pept.processing.AutoCorrelation(lag='t', signals=['vx', 'vy', 'vz'], span=None, num_divisions=500,
max_distance=10, normalize=False, preprocess=True, **kwargs)

Bases: Reducer

Compute autocorrelation of multiple measures (eg YZ velocities) as a function of a lagging variable (eg time).

Reducer signature:

PointData -> AutoCorrelation.fit -> PlotlyGrapher2D
list[PointData] -> AutoCorrelation.fit -> PlotlyGrapher2D
list[np.ndarray] -> AutoCorrelation.fit -> PlotlyGrapher2D

Each sample in the input `PointData` is treated as a separate streamline / tracer pass. You can group
passes using `Segregate + GroupBy(“label”)`.
Autocorrelation and autocovariance each refer to about 3 different things in each field. The formula used here,
inspired by the VACF in molecular dynamics and generalised for arbitrary measures, is:

𝐶(𝐿𝑖) =

∑︀
𝑁 𝑉 (𝐿0) · 𝑉 (𝐿𝑖)

𝑁

i.e. the autocorrelation C at a lag of Li is the average of the dot products of quantities V for all N tracers. For
example, the velocity autocorrelation function with respect to time would be the average of vx(0) vx(t) + vy(0)
vy(t) + vz(0) vz(t) at a given time t.

The input lag defines the column used as a lagging variable; it can be given as a named column string (e.g. “t”)
or index (e.g. 0).

The input signals define the quantities for which the autocorrelation is computed, given as a list of column names
(e.g. [“vy”, “vz”]) or indices (e.g. [5, 6]).

The input span, if defined, is the minimum and maximum values for the lag (e.g. start and end times) for which
the autocorrelation will be computed. By default it is automatically computed as the range of values.

The input num_divisions is the number of lag points between span[0] and span[1] for which the autocorrelation
will be computed.

The max_distance parameter defines the maximum distance allowed between a lag value and the closest trajectory
value for it to be considered.

If normalize is True, then the formula used becomes:

𝐶(𝐿𝑖) =

∑︀
𝑁 𝑉 (𝐿0) · 𝑉 (𝐿𝑖)/𝑉 (𝐿0) · 𝑉 (𝐿0)

𝑁

If preprocess is True, then the times of each tracer pass is taken relative to its start; only relevant if using time as
the lagging variable.

The extra keyword arguments **kwargs are passed to PlotlyGrapher2D.add_points. You can e.g. set the YAxis
limits by adding ylim = [0, 20].

The extra keyword arguments **kwargs are passed to plotly.graph_objs.Scatter. You can e.g. set a different
colorscheme with “marker_colorscheme = ‘Viridis’”.

New in pept-0.5.1

5.3. Manual 193



PEPT Documentation, Release 0.5.2

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Velocity(7), # Compute vx, vy, vz
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the AutoCorrelation algorithm can be used to compute the VACF:

>>> from pept.processing import AutoCorrelation
>>> fig = AutoCorrelation("t", ["vx", "vy", "vz"]).fit(streamlines)
>>> fig.show()

The radial velocity autocorrelation can be computed as a function of the pipe length (X axis as it was reoriented):

>>> entrance = -100
>>> exit = 100
>>> ac = AutoCorrelation("x", ["vy", "vz"], span = [entrance, exit])
>>> ac.fit(streamlines).show()

The raw lags and autocorrelations plotted can be accessed directly:

>>> ac.lags
>>> ac.correlation

The radial location can be autocorrelated with time, then normalised to show periodic movements (e.g. due to a
mixer):

>>> ac = AutoCorrelation("t", ["y", "z"], normalize = True)
>>> ac.fit(streamlines).show()

__init__(lag='t', signals=['vx', 'vy', 'vz'], span=None, num_divisions=500, max_distance=10,
normalize=False, preprocess=True, **kwargs)

194 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Methods

__init__([lag, signals, span, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

5.3. Manual 195



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.SpatialProjections

class pept.processing.SpatialProjections(directory, start, end, dimension='x', num_divisions=500,
max_distance=10, colorbar_col=-1, height=1000,
width=1000, prefix='frame', **kwargs)

Bases: Reducer

Project multiple tracer passes onto a moving 2D plane along a given direction between start and end coordinates,
saving each frame in directory.

Reducer signature:

PointData -> SpatialProjections.fit -> None
list[PointData] -> SpatialProjections.fit -> None
list[np.ndarray] -> SpatialProjections.fit -> None

Each sample in the input `PointData` is treated as a separate streamline / tracer pass. You can group
passes using `Segregate + GroupBy(“label”)`.
The generated images (saved in directory with height x width pixels) can be stitched into a video using
pept.plots.make_video.

The extra keyword arguments **kwargs are passed to the histogram creation routine pept.plots.histogram. You
can e.g. set the YAxis limits by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in multiple passes / streamlines. First
locate the tracers, then split their trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>> ])
>>> streamlines = split_pipe.fit(trajectories)

196 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Now each sample in streamlines corresponds to a single tracer pass, e.g. streamlines[0] is the first pass, stream-
lines[1] is the second. The passes were reoriented and centred such that the pipe is aligned with the X axis.

Now the RelativeDeviationsLinear reducer can be used to create images of the mixing between the pipe entrance
and exit:

>>> from pept.processing import SpatialProjections
>>> entrance_x = -100 # Pipe data was aligned with X
>>> exit_x = 100
>>> SpatialProjections(
>>> directory = "projections", # Creates directory to save images
>>> start = entrance_x,
>>> end = exit_x,
>>> ).fit(streamlines)

Now the directory “projections” was created inside your current working folder, and eachc projected frame was
saved there as “frame0000.png”, “frame0001.png”, etc. You can stitch all images together into a video using
pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video(
>>> "projections/frame*.png",
>>> output = "projections/video.avi"
>>> )

The raw projections can also be extracted directly:

>>> sp = SpatialProjections(
>>> directory = "projections", # Creates directory to save images
>>> p1 = entrance_x,
>>> p2 = exit_x,
>>> )
>>> sp.fit(streamlines)
>>> sp.projections

Attributes
projections

[list[(N, 5), np.ndarray]] A list of frames for each division between start and end, with
each frame saving 5 columns [t, x, y, z, colorbar_col].

__init__(directory, start, end, dimension='x', num_divisions=500, max_distance=10, colorbar_col=-1,
height=1000, width=1000, prefix='frame', **kwargs)

5.3. Manual 197

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

Methods

__init__(directory, start, end[, dimension, ...])

copy([deep]) Create a deep copy of an instance of this class, includ-
ing all inner attributes.

fit(trajectories[, executor, max_workers, ...])

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(trajectories, executor='joblib', max_workers=None, verbose=True)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

198 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Visualisation (pept.plots)

PEPT-oriented visulisation tools.

Visualisation functions and classes for PEPT data, transparently working with both pept base classes and raw NumPy
arrays (e.g. PlotlyGrapher.add_lines handles both pept.LineData and (N, 7) NumPy arrays).

The PlotlyGrapher class creates interactive, publication-ready 3D figures with optional subplots which can also be
exported to portable HTML files. The PlotlyGrapher2D class is its two-dimensional counterpart, handling e.g.
pept.Pixels.

pept.plots.format_fig(fig[, size, font, ...]) Format a Plotly figure to a consistent theme for the Na-
ture Computational Science journal.

pept.plots.histogram(data[, nbins, ...]) Create histogram of data with PEPT-relevant defaults for
plotly.express.histogram.

pept.plots.make_video(frames[, output, fps, ...]) Stitch multiple images from frames into a video saved to
output.

pept.plots.PlotlyGrapher([rows, cols, xlim, ...]) A class for PEPT data visualisation using Plotly-based
3D graphs.

pept.plots.PlotlyGrapher2D([rows, cols, ...]) A class for PEPT data visualisation using Plotly-based
2D graphs.

pept.plots.format_fig

pept.plots.format_fig(fig, size=20, font='Computer Modern', template='plotly_white')
Format a Plotly figure to a consistent theme for the Nature Computational Science journal.

pept.plots.histogram

pept.plots.histogram(data, nbins=None, histnorm='percent', marginal='box', xlim=None, ylim=None,
xaxis_title=None, yaxis_title=None, **kwargs)

Create histogram of data with PEPT-relevant defaults for plotly.express.histogram.

You can check the official documentation for all available options: https://plotly.github.io/plotly.py-docs/
generated/plotly.express.histogram.html.

Parameters
data

[(N,) numpy.ndarray-like] A 1D vector of values to histogram.

nbins
[int, optional] Positive integer. Sets the number of bins.

5.3. Manual 199

https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram.html
https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram.html
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

histnorm
[str, default “percent”] One of ‘percent’, ‘probability’, ‘density’, or ‘probability density’
If None, the output of histfunc is used as is. If ‘probability’, the output of histfunc for a
given bin is divided by the sum of the output of histfunc for all bins. If ‘percent’, the output
of histfunc for a given bin is divided by the sum of the output of histfunc for all bins and
multiplied by 100. If ‘density’, the output of histfunc for a given bin is divided by the size
of the bin. If ‘probability density’, the output of histfunc for a given bin is normalized such
that it corresponds to the probability that a random event whose distribution is described by
the output of histfunc will fall into that bin.

marginal
[str, default “box”] One of ‘rug’, ‘box’, ‘violin’, or ‘histogram’. If set, a subplot is drawn
alongside the main plot, visualizing the distribution.

xlim
[list of two numbers, optional] If provided, overrides auto-scaling on the x-axis in carte-
sian coordinates.

ylim
[list of two numbers, optional] If provided, overrides auto-scaling on the y-axis in carte-
sian coordinates.

xaxis_title
[str, optional] X-axis label.

yaxis_title
[str, optional] Y-axis label.

pept.plots.make_video

pept.plots.make_video(frames, output='video.avi', fps=10, verbose=True)
Stitch multiple images from frames into a video saved to output.

Parameters
frames

[str or list[str]] Either a prefix for the frame names (e.g. “directory/frame*.png”) or a
list of paths to individual frames.

output
[str, default “video.avi”] Name of output video.

fps
[int, default 10] Number of frames per second.

Examples

Stitch all files matching a glob prefix: >>> from pept.plots import make_video >>>
make_video(“lacey/frame*.png”, “lacey/video.avi”)

Stitch individual files: >>> make_video([“frame0.png”, “frame1.png”, “frame2.png”])

200 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/numbers.html#module-numbers
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/numbers.html#module-numbers
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

pept.plots.PlotlyGrapher

class pept.plots.PlotlyGrapher(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])
Bases: PEPTObject

A class for PEPT data visualisation using Plotly-based 3D graphs.

The PlotlyGrapher class can create and automatically configure an arbitrary number of 3D subplots for PEPT
data visualisation. They are by default set to use the alternative PEPT 3D axes convention - having the y-axis
pointing upwards, such that the vertical screens of a PEPT scanner represent the xy-plane.

This class can be used to draw 3D scatter or line plots, with optional colour-coding using extra data columns
(e.g. relative tracer activity or trajectory label).

It also provides easy access to the most common configuration parameters for the plots, such as axes limits,
subplot titles, colorbar titles, etc. It can work with pre-computed Plotly traces (such as the ones from the pept
base classes), as well as with numpy arrays.

Raises
ValueError

If xlim, ylim or zlim are not lists of length 2.

Examples

The figure is created when instantiating the class.

>>> grapher = PlotlyGrapher()
>>> lors = LineData(raw_lors...) # Some example lines
>>> points = PointData(raw_points...) # Some example points

Creating a trace based on a numpy array:

>>> sample_lors = lors[0] # A numpy array of a single sample
>>> sample_points = points[0]
>>> grapher.add_lines(sample_lors)
>>> grapher.add_points(sample_points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default Plotly renderer:

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher.lines_trace(lines)
>>> PlotlyGrapher.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines methods.

Attributes

5.3. Manual 201

https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

xlim
[list or numpy.ndarray] A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is the upper limit of the x-axis of
all the subplots.

ylim
[list or numpy.ndarray] A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is the upper limit of the y-axis of
all the subplots.

zlim
[list or numpy.ndarray] A list of length 2, formatted as [z_min, z_max], where z_min is
the lower limit of the z-axis of all the subplots and z_max is the upper limit of the z-axis of
all the subplots.

fig
[Plotly.Figure instance] A Plotly.Figure instance, with any number of subplots (as de-
fined by rows and cols) pre-configured for PEPT data.

__init__(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])
PlotlyGrapher class constructor.

Parameters
rows

[int, optional] The number of rows of subplots. The default is 1.

cols
[int, optional] The number of columns of subplots. The default is 1.

xlim
[list or numpy.ndarray, optional] A list of length 2, formatted as [x_min, x_max], where
x_min is the lower limit of the x-axis of all the subplots and x_max is the upper limit of the
x-axis of all the subplots.

ylim
[list or numpy.ndarray, optional] A list of length 2, formatted as [y_min, y_max], where
y_min is the lower limit of the y-axis of all the subplots and y_max is the upper limit of the
y-axis of all the subplots.

zlim
[list or numpy.ndarray, optional] A list of length 2, formatted as [z_min, z_max], where
z_min is the lower limit of the z-axis of all the subplots and z_max is the upper limit of the
z-axis of all the subplots.

subplot_titles
[list of str, default [” “]] A list of the titles of the subplots - e.g. [“plot a)”, “plot b)”].
The default is a list of empty strings.

Raises
ValueError

If rows < 1 or cols < 1.

ValueError
If xlim, ylim or zlim are not lists of length 2.

202 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Methods

__init__([rows, cols, xlim, ylim, zlim, ...]) PlotlyGrapher class constructor.
add_lines(lines[, row, col, width, color, ...]) Create and plot a trace for all the lines in a numpy

array or pept.LineData, with possible color-coding.
add_pixels(pixels[, row, col, condition, ...]) Create and plot a trace with all the pixels in this class,

with possible filtering.
add_points(points[, row, col, size, color, ...]) Create and plot a trace for all the points in a numpy

array or pept.PointData, with possible color-coding.
add_trace(trace[, row, col]) Add a precomputed Plotly trace to a given subplot.
add_traces(traces[, row, col]) Add a list of precomputed Plotly traces to a given sub-

plot.
add_voxels(voxels[, row, col, condition, ...]) Create and plot a trace for all the voxels in a

pept.Voxels instance, with possible filtering.
copy([deep]) Create a deep copy of an instance of this class, includ-

ing all inner attributes.
create_figure() Create a Plotly figure, pre-configured for PEPT data.
equalise_axes() Equalise the axes of all subplots by setting the system

limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

lines_trace(lines[, width, color, opacity, ...]) Static method for creating a Plotly trace of lines.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
points_trace(points[, size, color, opacity, ...]) Static method for creating a Plotly trace of points.
save(filepath) Save a PEPTObject instance as a binary pickle object.
show([equal_axes]) Show the Plotly figure, optionally setting equal axes

limits.
to_html(filepath[, equal_axes, include_plotlyjs]) Save the current Plotly figure as a self-contained

HTML webpage.
xlabel(label[, row, col])

ylabel(label[, row, col])

zlabel(label[, row, col])

Attributes

fig

xlim

ylim

zlim

create_figure()

Create a Plotly figure, pre-configured for PEPT data.

5.3. Manual 203



PEPT Documentation, Release 0.5.2

This function creates a Plotly figure with an arbitrary number of subplots, as given in the class instantiation
call. It configures them to have the y-axis pointing upwards, as per the PEPT 3D axes convention. It also
sets the axes limits and labels.

Returns
fig

[Plotly Figure instance] A Plotly Figure instance, with any number of subplots (as
defined when instantiating the class) pre-configured for PEPT data.

property xlim

property ylim

property zlim

property fig

xlabel(label, row=1, col=1)

ylabel(label, row=1, col=1)

zlabel(label, row=1, col=1)

static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1,
colorscale='Magma', colorbar_title=None, **kwargs)

Static method for creating a Plotly trace of points. See PlotlyGrapher.add_points for the full documentation.

add_points(points, row=1, col=1, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1,
colorscale='Magma', colorbar_title=None, **kwargs)

Create and plot a trace for all the points in a numpy array or pept.PointData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the points included in the numpy array or
pept.PointData instance (or subclass thereof!) points and adds it to the subplot determined by row and
col.

The expected data row is [time, x1, y1, z1, . . . ].

Parameters
points

[(M, N >= 4) numpy.ndarray or pept.PointData] The expected data columns are: [time,
x1, y1, z1, etc.]. If a pept.PointData instance (or subclass thereof) is received, the inner
points will be used.

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

size
[float, default 2.0] The marker size of the points.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

204 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float


PEPT Documentation, Release 0.5.2

colorbar
[bool, default True] If set to True, will color-code the data in the points column color-
bar_col. Is overridden by color if set.

colorbar_col
[int, default -1] The column in points that will be used to color the points. Only has an
effect if colorbar is set to True. The default is -1 (the last column).

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the colorbar_col column in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Raises
ValueError

If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None) and there are fewer than 10 unique values
in the colorbar_col column in points, then the points for each unique label will be added as separate traces.

This is helpful for cases such as when plotting points with labelled trajectories, as when there are fewer
than 10 trajectories, the distinct colours automatically used by Plotly when adding multiple traces allow the
points to be better distinguished.

Examples

Add an array of points (data columns: [time, x, y, z]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_points(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_points(point_data)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you can plot every 10th point using
slices:

>>> pts = np.array(...) # shape (N, M >= 4), N very large
>>> grapher.add_points(pts[::10])

static lines_trace(lines, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0,
colorscale='Magma', colorbar_title=None)

Static method for creating a Plotly trace of lines. See PlotlyGrapher.add_lines for the full documentation.

5.3. Manual 205

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0,
colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the lines in a numpy array or pept.LineData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the lines included in the numpy array or
pept.LineData instance (or subclass thereof!) lines and adds it to the subplot determined by row and col.

It expects LoR-like data, where each line is defined by two points. The expected data columns are [time,
x1, y1, z1, x2, y2, z2, . . . ].

Parameters
lines

[(M, N >= 7) numpy.ndarray or pept.LineData] The expected data columns: [time, x1,
y1, z1, x2, y2, z2, etc.]. If a pept.LineData instance (or subclass thereof) is received, the
inner lines will be used.

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

width
[float, default 2.0] The width of the lines.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.6] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the data in the lines column color-
bar_col. Is overridden if color is set. The default is True, so that every line has a different
color.

colorbar_col
[int, default 0] The column in the data samples that will be used to color the points.
Only has an effect if colorbar is set to True. The default is 0 (the first column - time).

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the colorbar_col column in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Raises
ValueError

If lines is not a numpy.ndarray with shape (M, N), where N >= 7.

206 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Examples

Add an array of lines (data columns: [t, x1, y1, z1, x2, y2, z2]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines_raw = np.array(...) # shape (N, M >= 7)
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

Add all the lines in a LineData instance:

>>> line_data = pept.LineData(...) # Some example data
>>> grapher.add_lines(line_data)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 7), N very large
>>> grapher.add_lines(lines_raw[::10])

add_pixels(pixels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, opacity=0.9,
colorscale='Magma')

Create and plot a trace with all the pixels in this class, with possible filtering.

Creates a plotly.graph_objects.Surface object for the centres of all pixels encapsulated in a pept.Pixels
instance, colour-coding the pixel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all pixels that have a value larger than 0.

Parameters
pixels

[pept.Pixels] The pixel space, encapsulated in a pept.Pixels instance (or subclass
thereof). Only pept.Pixels are accepted as raw pixels on their own do not contain data
about the spatial coordinates of the pixel box.

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

condition
[function, default lambda pixels: pixels > 0] The filtering function applied to the pixel
data before plotting it. It should return a boolean mask (a numpy array of the same shape,
filled with True and False), selecting all pixels that should be plotted. The default, lambda
x: x > 0 selects all pixels which have a value larger than 0.

opacity
[float, default 0.4] The opacity of the surface, where 0 is transparent and 1 is fully
opaque.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

5.3. Manual 207

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str


PEPT Documentation, Release 0.5.2

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(pixels.pixels_trace())
>>> grapher.show()

add_voxels(voxels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, size=4, color=None,
opacity=0.4, colorbar=True, colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the voxels in a pept.Voxels instance, with possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of all voxels encapsulated in a pept.Voxels
instance, colour-coding the voxel value. The trace is added to the subplot determined by row and col.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters
voxels

[pept.Voxels] The voxel space, encapsulated in a pept.Voxels object.

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

condition
[function, default lambda voxel_data: voxel_data > 0] The filtering function applied
to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

size
[float, default 4] The size of the plotted voxel points. Note that due to the large num-
ber of voxels in typical applications, the voxel centres are plotted as square points, which
provides an easy to understand image that is also fast and responsive.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the voxel values. Is overridden if color
is set.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the voxel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at

208 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str


PEPT Documentation, Release 0.5.2

plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Raises
TypeError

If voxels is not an instance of pept.Voxels or subclass thereof.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_voxels(voxels)
>>> grapher.show()

add_trace(trace, row=1, col=1)
Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

Parameters
trace

[Plotly trace (Scatter3d)] A precomputed Plotly trace

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

add_traces(traces, row=1, col=1)
Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

Parameters
traces

[list [ Plotly trace (Scatter3d) ]] A list of precomputed Plotly traces

row
[int, default 1] The row of the subplot to add the traces to.

col
[int, default 1] The column of the subplot to add the traces to.

equalise_axes()

Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

5.3. Manual 209

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Returns
pept.PEPTObject subclass instance

The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath

[filename or file handle] If filepath is a path (rather than file handle), it is relative to
where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

show(equal_axes=True)
Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer (e.g. browser, or PDF). The available
renderers can be found by running the following code:

210 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

Parameters
equal_axes

[bool, default True] Set xlim, ylim, zlim to equal ranges such that the axes limits are
equalised. Only has an effect if xlim, ylim and zlim are all None. If False, the default Plotly
behaviour is used (i.e. automatically use min, max for each dimension).

to_html(filepath, equal_axes=True, include_plotlyjs=True)
Save the current Plotly figure as a self-contained HTML webpage.

Parameters
filepath

[str or writeable] Path or open file descriptor to save the HTML file to.

equal_axes
[bool, default True] Set xlim, ylim to equal ranges such that the axes limits are equalised.
Only has an effect if both xlim and ylim are None. If False, the default Plotly behaviour is
used (i.e. automatically use min, max for each dimension).

include_plotlyjs
[True or “cdn”, default True] If True, embed the Plotly.JS library in the HTML file,
allowing the graph to be shown offline, but adding 3 MB. If “cdn”, the Plotly.JS library
will be downloaded dynamically.

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.plots.PlotlyGrapher2D

class pept.plots.PlotlyGrapher2D(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)
Bases: object

A class for PEPT data visualisation using Plotly-based 2D graphs.

The PlotlyGrapher class can create and automatically configure an arbitrary number of 2D subplots for PEPT
data visualisation.

This class can be used to draw 2D scatter or line plots, with optional colour-coding using extra data columns
(e.g. relative tracer activity or trajectory label).

5.3. Manual 211

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

It also provides easy access to the most common configuration parameters for the plots, such as axes limits,
subplot titles, colorbar titles, etc. It can work with pre-computed Plotly traces (such as the ones from the pept
base classes), as well as with numpy arrays.

Examples

The figure is created when instantiating the class.

>>> import numpy as np
>>> from pept.visualisation import PlotlyGrapher2D

>>> grapher = PlotlyGrapher2D()
>>> lines = np.random.random((100, 5)) # columns [t, x1, y1, x2, y2]
>>> points = np.random.random((100, 3)) # columns [t, x, y]

Creating a trace based on a numpy array:

>>> grapher.add_lines(lines)
>>> grapher.add_points(points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default Plotly renderer:

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher2D.lines_trace(lines)
>>> PlotlyGrapher2D.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines methods.

Attributes
xlim

[list or numpy.ndarray] A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is the upper limit of the x-axis of
all the subplots.

ylim
[list or numpy.ndarray] A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is the upper limit of the y-axis of
all the subplots.

fig
[Plotly.Figure instance] A Plotly.Figure instance, with any number of subplots (as de-
fined by rows and cols) pre-configured for PEPT data.

__init__(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)
PlotlyGrapher class constructor.

Parameters

212 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

rows
[int, optional] The number of rows of subplots. The default is 1.

cols
[int, optional] The number of columns of subplots. The default is 1.

xlim
[list or numpy.ndarray, optional] A list of length 2, formatted as [x_min, x_max], where
x_min is the lower limit of the x-axis of all the subplots and x_max is the upper limit of the
x-axis of all the subplots.

ylim
[list or numpy.ndarray, optional] A list of length 2, formatted as [y_min, y_max], where
y_min is the lower limit of the y-axis of all the subplots and y_max is the upper limit of the
y-axis of all the subplots.

subplot_titles
[list of str, default [” “]] A list of the titles of the subplots - e.g. [“plot a)”, “plot b)”].
The default is a list of empty strings.

Raises
ValueError

If rows < 1 or cols < 1.

ValueError
If xlim or ylim are not lists of length 2.

5.3. Manual 213

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Methods

__init__([rows, cols, xlim, ylim, ...]) PlotlyGrapher class constructor.
add_image(image, **kwargs) Create and plot a go.Image trace.
add_lines(lines[, row, col, width, color, ...]) Create and plot a trace for all the lines in a numpy

array, with possible color-coding.
add_pixels(pixels[, row, col, colorscale, ...]) Create and plot a trace with all the pixels in this class,

with possible filtering.
add_points(points[, row, col, size, color, ...]) Create and plot a trace for all the points in a numpy

array, with possible color-coding.
add_timeseries(points[, rows_cols, size, ...]) Add a timeseries plot for each dimension in points vs.
add_trace(trace[, row, col]) Add a precomputed Plotly trace to a given subplot.
add_traces(traces[, row, col]) Add a list of precomputed Plotly traces to a given sub-

plot.
create_figure(**kwargs) Create a Plotly figure, pre-configured for PEPT data.
equalise_axes() Equalise the axes of all subplots by setting the system

limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

equalise_separate() Equalise the axes of all subplots individually by set-
ting the system limits in each dimension to equal val-
ues, such that all data plotted is within the plotted
bounds.

lines_trace(lines[, width, color, opacity]) Static method for creating a Plotly trace of lines.
points_trace(points[, size, color, opacity, ...]) Static method for creating a Plotly trace of points.
show([equal_axes]) Show the Plotly figure, optionally setting equal axes

limits.
timeseries_trace(points[, size, color, ...]) Static method for creating a list of 3 Plotly traces of

timeseries.
to_html(filepath[, equal_axes, include_plotlyjs]) Save the current Plotly figure as a self-contained

HTML webpage.
xlabel(label[, row, col])

ylabel(label[, row, col])

Attributes

fig

xlim

ylim

create_figure(**kwargs)
Create a Plotly figure, pre-configured for PEPT data.

This function creates a Plotly figure with an arbitrary number of subplots, as given in the class instantiation
call.

Returns

214 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

fig
[Plotly Figure instance] A Plotly Figure instance, with any number of subplots (as
defined when instantiating the class) pre-configured for PEPT data.

property xlim

property ylim

xlabel(label, row=1, col=1)

ylabel(label, row=1, col=1)

property fig

static timeseries_trace(points, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1,
colorscale='Magma', colorbar_title=None, **kwargs)

Static method for creating a list of 3 Plotly traces of timeseries. See PlotlyGrapher2D.add_timeseries for
the full documentation.

add_timeseries(points, rows_cols=[(1, 1), (2, 1), (3, 1)], size=6.0, color=None, opacity=0.8,
colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

Add a timeseries plot for each dimension in points vs. time.

If the current PlotlyGrapher2D figure does not have enough rows and columns to accommodate the three
subplots (at coordinates rows_cols), the inner figure will be regenerated with enough rows and columns.

Parameters
points

[(M, N >= 4) numpy.ndarray or pept.PointData] The expected data columns are: [time,
x1, y1, z1, etc.]. If a pept.PointData instance (or subclass thereof) is received, the inner
points will be used.

rows_cols
[list[tuple[2]]] A list with 3 tuples, each tuple containing the subplot indices to plot the
x, y, and z coordinates (indexed from 1).

size
[float, default 6.0] The marker size of the points.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the data in the points column color-
bar_col. Is overridden by color if set.

colorbar_col
[int, default -1] The column in points that will be used to color the points. Only has an
effect if colorbar is set to True. The default is -1 (the last column).

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the colorbar_col column in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

5.3. Manual 215

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


PEPT Documentation, Release 0.5.2

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Raises
ValueError

If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None) and there are fewer than 10 unique values
in the colorbar_col column in points, then the points for each unique label will be added as separate traces.

This is helpful for cases such as when plotting points with labelled trajectories, as when there are fewer
than 10 trajectories, the distinct colours automatically used by Plotly when adding multiple traces allow the
points to be better distinguished.

Examples

Add an array of 3D points (data columns: [time, x, y, z]) to a PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_timeseries(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_timeseries(point_data)
>>> grapher.show()

static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1,
colorscale='Magma', colorbar_title=None, **kwargs)

Static method for creating a Plotly trace of points. See PlotlyGrapher2D.add_points for the full documen-
tation.

add_points(points, row=1, col=1, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1,
colorscale='Magma', colorbar_title=None, **kwargs)

Create and plot a trace for all the points in a numpy array, with possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the points included in the numpy array points and adds
it to the subplot selected by row and col.

The expected data columns are [time, x1, y1, . . . ].

Parameters
points

[(M, N >= 2) numpy.ndarray] Points to plot. The expected data columns are: [t, x1, y1,
etc.].

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

216 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

size
[float, default 2.0] The marker size of the points.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information, check the Plotly documen-
tation. The default is None.

opacity
[float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

colorbar
[bool, default True] If set to True, will color-code the data in the points column color-
bar_col. Is overridden by color if set.

colorbar_col
[int, default -1] The column in points that will be used to color the points. Only has an
effect if colorbar is set to True. The default is -1 (the last column).

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the colorbar_col column in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

colorbar_title
[str, optional] If set, the colorbar will have this title above it.

Raises
ValueError

If points is not a numpy.ndarray with shape (M, N), where N >= 3.

Examples

Add an array of points (data columns: [time, x, y]) to a PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.random.random((10, 3))
>>> grapher.add_points(points_raw)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you can plot every 10th point using
slices:

>>> pts = np.array(...) # shape (N, M >= 3), N very large
>>> grapher.add_points(pts[::10])

static lines_trace(lines, width=2.0, color=None, opacity=0.6, **kwargs)
Static method for creating a Plotly trace of lines. See PlotlyGrapher2D.add_lines for the full documenta-
tion.

add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6, **kwargs)
Create and plot a trace for all the lines in a numpy array, with possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the lines included in the numpy array lines and adds it
to the subplot determined by row and col.

5.3. Manual 217

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

It expects LoR-like data, where each line is defined by two points. The expected data columns are [x1, y1,
x2, y2, . . . ].

Parameters
lines

[(M, N >= 5) numpy.ndarray] The expected data columns are: [time, x1, y1, x2, y2, etc.].

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

width
[float, default 2.0] The width of the lines.

color
[str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”).

opacity
[float, default 0.6] The opacity of the lines, where 0 is transparent and 1 is fully opaque.

Raises
ValueError

If lines is not a numpy.ndarray with shape (M, N), where N >= 5.

Examples

Add an array of lines (data columns: [time, x1, y1, x2, y2]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines_raw = np.random.random((100, 5))
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 5), N very large
>>> grapher.add_lines(lines_raw[::10])

add_pixels(pixels, row=1, col=1, colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0, **kwargs)
Create and plot a trace with all the pixels in this class, with possible filtering.

Creates a plotly.graph_objects.Heatmap object for the centres of all pixels encapsulated in a pept.Pixels
instance, colour-coding the pixel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all pixels that have a value larger than 0.

Parameters
pixels

[pept.Pixels] The pixel space, encapsulated in a pept.Pixels instance (or subclass
thereof). Only pept.Pixels are accepted as raw pixels on their own do not contain data
about the spatial coordinates of the pixel box.

row
[int, default 1] The row of the subplot to add a trace to.

218 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

col
[int, default 1] The column of the subplot to add a trace to.

colorscale
[str, default “Magma”] The Plotly scheme for color-coding the pixel values in the in-
put data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given at
plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color is
not set.

transpose
[bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_pixels(pixels)
>>> grapher.show()

add_image(image, **kwargs)
Create and plot a go.Image trace.

Parameters
image

[(width, height, 3 or 4) np.ndarray] An image with 3 (RGB) or 4 (RGBA) channels.

**kwargs
[keyword arguments] Other arguments to be passed to the plotly.graph_objs.Image con-
structor.

add_trace(trace, row=1, col=1)
Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

Parameters
trace

[Plotly trace] A precomputed Plotly trace.

row
[int, default 1] The row of the subplot to add a trace to.

col
[int, default 1] The column of the subplot to add a trace to.

add_traces(traces, row=1, col=1)
Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

Parameters

5.3. Manual 219

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

traces
[list [ Plotly trace ]] A list of precomputed Plotly traces

row
[int, default 1] The row of the subplot to add the traces to.

col
[int, default 1] The column of the subplot to add the traces to.

equalise_axes()

Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

equalise_separate()

Equalise the axes of all subplots individually by setting the system limits in each dimension to equal values,
such that all data plotted is within the plotted bounds.

show(equal_axes=True)
Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer (e.g. browser, or PDF). The available
renderers can be found by running the following code:

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

Parameters
equal_axes

[bool, default True] Set xlim, ylim to equal ranges such that the axes limits are equalised.
Only has an effect if both xlim and ylim are None. If False, the default Plotly behaviour is
used (i.e. automatically use min, max for each dimension).

to_html(filepath, equal_axes=True, include_plotlyjs=True)
Save the current Plotly figure as a self-contained HTML webpage.

Parameters
filepath

[str or writeable] Path or open file descriptor to save the HTML file to.

equal_axes
[bool, default True] Set xlim, ylim to equal ranges such that the axes limits are equalised.
Only has an effect if both xlim and ylim are None. If False, the default Plotly behaviour is
used (i.e. automatically use min, max for each dimension).

include_plotlyjs
[True or “cdn”, default True] If True, embed the Plotly.JS library in the HTML file,
allowing the graph to be shown offline, but adding 3 MB. If “cdn”, the Plotly.JS library
will be downloaded dynamically.

220 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.utilities

PEPT-oriented utility functions.

The utility functions include low-level optimised Cython functions (e.g. find_cutpoints) that are of common interest
across the pept package, as well as I/O functions, parallel maps and pixel/voxel traversal algorithms.

Even though the functions are grouped in directories (subpackages) and files (modules), unlike the rest of the package,
they are all imported into the pept.utilities root, so that their import paths are not too long.

pept.utilities.find_cutpoints(const double[,
...)

Compute the cutpoints from a given array of lines.

pept.utilities.find_minpoints(const double[,
...)

Compute the minimum distance points (MDPs) from all
combinations of num_lines lines given in an array of
lines sample_lines.

pept.utilities.group_by_column(data_array, ...) Group the rows in a 2D data_array based on the unique
values in a given column_to_separate, returning the
groups as a list of numpy arrays.

pept.utilities.number_of_lines(...) Return the number of lines (or rows) in a file.
pept.utilities.read_csv(filepath_or_buffer) Read a given number of lines from a file and return a

numpy array of the values.
pept.utilities.read_csv_chunks(...[, ...]) Read chunks of data from a file lazily, returning numpy

arrays of the values.
pept.utilities.parallel_map_file(func, ...) Utility for parallelising (read CSV chunk -> process

chunk) workflows.
pept.utilities.traverse2d(double[, , ...) Fast pixel traversal for 2D lines (or LoRs).
pept.utilities.traverse3d(double[, , , ...) Fast voxel traversal for 3D lines (or LoRs).
pept.utilities.ChunkReader(...[, skiprows, ...]) Class for fast, on-demand reading / parsing and iteration

over chunks of data from CSV files.

pept.utilities.find_cutpoints

pept.utilities.find_cutpoints(const double[:, :] sample_lines, double max_distance, const double[:]
cutoffs, bool append_indices=0)

Compute the cutpoints from a given array of lines.

Function signature:
find_cutpoints(

double[:, :] sample_lines, # LoRs in sample
double max_distance, # Max distance between two LoRs
double[:] cutoffs, # Spatial cutoff for cutpoints
bint append_indices = False # Append LoR indices used

)

5.3. Manual 221



PEPT Documentation, Release 0.5.2

This is a low-level Cython function that does not do any checks on the input data - it is meant to be used in other
modules / libraries. For a normal user, the pept.tracking.peptml function find_cutpoints and class Cutpoints
are recommended as higher-level APIs. They do check the input data and are easier to use (for example, they
automatically compute the cutoffs).

A cutpoint is the point in 3D space that minimises the distance between any two lines. For any two non-parallel
3D lines, this point corresponds to the midpoint of the unique segment that is perpendicular to both lines.

This function considers every pair of lines in sample_lines and returns all the cutpoints that satisfy the following
conditions:

1. The distance between the two lines is smaller than max_distance.

2. The cutpoints are within the cutoffs.

Parameters
sample_lines

[(N, M >= 7) numpy.ndarray] The sample of lines, where each row is [time, x1, y1, z1, x2,
y2, z2], containing two points [x1, y1, z1] and [x2, y2, z2] defining an LoR.

max_distance
[float] The maximum distance between two LoRs for their cutpoint to be considered.

cutoffs
[(6,) numpy.ndarray] Only consider the cutpoints that fall within the cutoffs. cutoffs has
the format [min_x, max_x, min_y, max_y, min_z, max_z].

append_indices
[bool, optional] If set to True, the indices of the individual LoRs that were used to compute
each cutpoint is also appended to the returned array. Default is False.

Returns
cutpoints

[(M, 4) or (M, 6) numpy.ndarray] A numpy array of the calculated weighted cutpoints. If
append_indices is False, then the columns are [time, x, y, z]. If append_indices is True, then
the columns are [time, x, y, z, i, j], where i and j are the LoR indices from sample_lines that
were used to compute the cutpoints. The time is the average between the timestamps of the
two LoRs that were used to compute the cutpoint. The first column (for time) is sorted.

Examples

>>> import numpy as np
>>> from pept.utilities import find_cutpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> cutpoints = find_cutpoints(lines, max_distance, cutoffs)

222 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

pept.utilities.find_minpoints

pept.utilities.find_minpoints(const double[:, :] sample_lines, Py_ssize_t num_lines, double max_distance,
const double[:] cutoffs, bool append_indices=0)

Compute the minimum distance points (MDPs) from all combinations of num_lines lines given in an array of
lines sample_lines.

Function signature:
find_minpoints(

double[:, :] sample_lines, # LoRs in sample
Py_ssize_t num_lines, # Number of LoRs in combinations
double max_distance, # Max distance from MDP to LoRs
double[:] cutoffs, # Spatial cutoff for minpoints
bool append_indices = 0 # Append LoR indices used

)

Given a sample of lines, this functions computes the minimum distance points (MDPs) for every possible com-
bination of num_lines lines. The returned numpy array contains all MDPs that satisfy the following:

1. Are within the cutoffs.

2. Are closer to all the constituent LoRs than max_distance.

Parameters
sample_lines

[(M, N) numpy.ndarray] A 2D array of lines, where each line is defined by two points such
that every row is formatted as [t, x1, y1, z1, x2, y2, z2, etc.]. It must have at least 2 lines
and the combination size num_lines must be smaller or equal to the number of lines. Put
differently: 2 <= num_lines <= len(sample_lines).

num_lines
[int] The number of lines in each combination of LoRs used to compute the MDP. This
function considers every combination of numlines from the input sample_lines. It must be
smaller or equal to the number of input lines sample_lines.

max_distance
[float] The maximum allowed distance between an MDP and its constituent lines. If any
distance from the MDP to one of its lines is larger than max_distance, the MDP is thrown
away.

cutoffs
[(6,) numpy.ndarray] An array of spatial cutoff coordinates with exactly 6 elements as
[x_min, x_max, y_min, y_max, z_min, z_max]. If any MDP lies outside this region, it is
thrown away.

append_indices
[bool] A boolean specifying whether to include the indices of the lines used to compute each
MDP. If False, the output array will only contain the [time, x, y, z] of the MDPs. If True, the
output array will have extra columns [time, x, y, z, line_idx(1), . . . , line_idx(n)] where n =
num_lines.

Returns
minpoints

[(M, N) numpy.ndarray] A 2D array of float`s containing the time and coordinates of the

5.3. Manual 223

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray


PEPT Documentation, Release 0.5.2

MDPs [time, x, y, z]. The time is computed as the average of the constituent lines. If `ap-
pend_indices is True, then num_lines indices of the constituent lines are appended as extra
columns: [time, x, y, z, line_idx1, line_idx2, ..].

Notes

There must be at least two lines in sample_lines and num_lines must be greater or equal to the number of lines
(i.e. len(sample_lines)). Put another way: 2 <= num_lines <= len(sample_lines).

This is a low-level Cython function that does not do any checks on the input data - it is meant to be used in other
modules / libraries. For a normal user, the pept.tracking.peptml function find_minpoints and class Minpoints
are recommended as higher-level APIs. They do check the input data and are easier to use (for example, they
automatically compute the cutoffs).

Examples

>>> import numpy as np
>>> from pept.utilities import find_minpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> num_lines = 3
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> minpoints = find_minpoints(lines, num_lines, max_distance, cutoffs)

pept.utilities.group_by_column

pept.utilities.group_by_column(data_array, column_to_separate)
Group the rows in a 2D data_array based on the unique values in a given column_to_separate, returning the
groups as a list of numpy arrays.

Parameters
data_array

[(M, N) numpy.ndarray] A generic 2D numpy array-like (will be converted using
numpy.asarray).

column_to_separate
[int] The column index in data_array from which the unique values will be used for group-
ing.

Returns
groups

[list of numpy.ndarray] A list whose elements are 2D numpy arrays - these are sub-arrays
from data_array for which the entries in the column column_to_separate are the same.

Raises
ValueError

If data_array does not have exactly 2 dimensions.

224 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError


PEPT Documentation, Release 0.5.2

Examples

Separate a 6x3 numpy array based on the last column:

>>> x = np.array([
>>> [1, 2, 1],
>>> [5, 3, 1],
>>> [1, 1, 2],
>>> [5, 2, 1],
>>> [2, 4, 2]
>>> ])
>>> x_sep = pept.utilities.group_by_column(x, -1)
>>> x_sep
>>> [array([[1, 2, 1],
>>> [5, 3, 1],
>>> [5, 2, 1]]),
>>> array([[1, 1, 2],
>>> [2, 4, 2]])]

pept.utilities.number_of_lines

pept.utilities.number_of_lines(filepath_or_buffer)
Return the number of lines (or rows) in a file.

Parameters
filepath_or_buffer

[str, path object or file-like object] Path to the file.

Returns
int

The number of lines in the file pointed at by filepath_or_buffer.

pept.utilities.read_csv

pept.utilities.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+',
header=None, engine='c', na_filter=False, quoting=3, memory_map=True,
**kwargs)

Read a given number of lines from a file and return a numpy array of the values.

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it reads from a space-separated values file at filepath_or_buffer, optionally skipping skiprows
lines and reading in nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer

[str, path object or file-like object] Any valid string path is acceptable. The string
could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host
is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a

5.3. Manual 225

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv


PEPT Documentation, Release 0.5.2

path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a
read() method, such as a file handler (e.g. via builtin open function) or StringIO.

skiprows
[list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number of lines
to skip (int) at the start of the file.

nrows
[int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype
[Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep
[str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header
[int, list of int, “infer”, optional] Row number(s) to use as the column names, and the
start of the data. By default assume there is no header present (i.e. header = None).

engine
[{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the python
engine is currently more feature-complete.

na_filter
[bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting
[int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting be-
havior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map
[bool, default True] If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using this option can improve
performance because there is no longer any I/O overhead.

**kwargs
[optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.read_csv_chunks

pept.utilities.read_csv_chunks(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class
'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3,
memory_map=True, **kwargs)

Read chunks of data from a file lazily, returning numpy arrays of the values.

This function returns a generator - an object that can be iterated over once, creating data on-demand. This means
that chunks of data will be read only when being accessed, making it a more efficient alternative to read_csv for
large files (> 1.000.000 lines).

A more convenient and feature-complete alternative is pept.utilities.ChunkReader which is more reusable and
can access out-of-order chunks using subscript notation (i.e. data[0]).

226 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it lazily read chunks of size chunksize from a space-separated values file at filepath_or_buffer,
optionally skipping skiprows lines and reading in nrows lines. It returns numpy.ndarray`s with `float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer

[str, path object or file-like object] Any valid string path is acceptable. The string
could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host
is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a
path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a
read() method, such as a file handler (e.g. via builtin open function) or StringIO.

chunksize
[int] Number of lines read in a chunk of data. Return TextFileReader object for iteration.

skiprows
[list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number of lines
to skip (int) at the start of the file.

nrows
[int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype
[Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep
[str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header
[int, list of int, “infer”, optional] Row number(s) to use as the column names, and the
start of the data. By default assume there is no header present (i.e. header = None).

engine
[{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the python
engine is currently more feature-complete.

na_filter
[bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting
[int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting be-
havior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map
[bool, default True] If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using this option can improve
performance because there is no longer any I/O overhead.

5.3. Manual 227

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

**kwargs
[optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.parallel_map_file

pept.utilities.parallel_map_file(func, fname, start, end, chunksize, *args, dtype=<class 'float'>,
processes=None, callback=<function <lambda>>,
error_callback=<function <lambda>>, **kwargs)

Utility for parallelising (read CSV chunk -> process chunk) workflows.

This function reads individual chunks of data from a CSV-formatted file, then asynchronously sends them as
numpy arrays to an arbitrary function func for processing. In effect, it reads a file in one main thread and processes
it in separate threads.

This is especially useful when dealing with very large files (like we do in PEPT. . . ) that you’d like to process in
batches, in parallel.

Parameters
func

[callable()] The function that will be called with each chunk of data, the chunk number,
the other positional arguments *args and keyword arguments **kwargs: func(data_chunk,
chunk_number, *args, **kwargs). data_chunk is a numpy array returned by numpy.loadtxt
and chunk_number is an int. func must be picklable for sending to other threads.

fname
[file, str, or pathlib.Path] The file, filename, or generator that numpy.loadtxt will be
supplied with.

start
[int] The starting line number that the chunks will be read from.

end
[int] The ending line number that the chunks will be read from. This is exclusive.

chunksize
[int] The number of lines that will be read for each chunk.

*args
[additional positional arguments] Additional positional arguments that will be sup-
plied to func.

dtype
[type] The data type of the numpy array that is returned by numpy.loadtxt. The default is
float.

processes
[int] The maximum number of threads that will be used for calling func. If left to the default
None, then the number returned by os.cpu_count() will be used.

callback
[callable()] When the result from a func call becomes ready callback is applied to it, that
is unless the call failed, in which case the error_callback is applied instead.

error_callback
[callable()] If the target function func fails, then the error_callback is called with the
exception instance.

228 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable


PEPT Documentation, Release 0.5.2

**kwargs
[additional keybord arguments] Additional keyword arguments that will be supplied to
func.

Returns
list

A Python list of the func call returns. The results are not necessarily in order, though this
can be verified by using the chunk number that is supplied to each call to func. If func does
not return anything, it will simply be a list of None.

Notes

This function uses numpy.loadtxt to read chunks of data and multiprocessing.Pool.apply_async to call func asyn-
chronously.

As the calls to func happen in different threads, all the usual parallel processing issues apply. For example, func
should not save data to the same file, as it will overwrite results from different threads and may become corrupt -
however, there is a workaround for this particular case: because the chunk numbers are guaranteed to be unique,
any data can be saved to a file whose name includes this chunk number, making it unique.

Examples

For a random file-like CSV data object:

>>> import io
>>> flike = io.StringIO("1,2,3\n4,5,6\n7,8,9")
>>> def func(data, chunk_number):
>>> return (data, chunk_number)
>>> results = parallel_map_file(func, flike, 0, 3, 1)
>>> print(results)
>>> [ ([1, 2, 3], 0), ([4, 5, 6], 1), ([7, 8, 9], 2) ]

pept.utilities.traverse2d

pept.utilities.traverse2d(double[:, :] pixels, const double[:, :] lines, const double[:] grid_x, const double[:]
grid_y)→ void

Fast pixel traversal for 2D lines (or LoRs).

Function Signature:
traverse2d(

double[:, :] pixels, # Initialised to zero!
double[:, :] lines, # Has exactly 7 columns!
double[:] grid_x, # Has pixels.shape[0] + 1 elements!
double[:] grid_y, # Has pixels.shape[1] + 1 elements!

)

This function computes the number of lines that passes through each pixel, saving the result in pixels. It does so
in an efficient manner, in which for every line, only the pixels that it passes through are traversed.

As it is highly optimised, this function does not perform any checks on the validity of the input data. Please check
the parameters before calling traverse2d, as it WILL segfault on wrong input data. Details are given below, along
with an example call.

5.3. Manual 229

https://docs.python.org/3/library/stdtypes.html#list


PEPT Documentation, Release 0.5.2

Parameters
pixels

[numpy.ndarray(dtype = numpy.float64, ndim = 2)] The pixels parameter is a
numpy.ndarray of shape (X, Y) that has been initialised to zeros before the function call.
The values will be modified in-place in the function to reflect the number of lines that pass
through each pixel.

lines
[numpy.ndarray(dtype = numpy.float64, ndim = 2)] The lines parameter is a
numpy.ndarray of shape(N, 5), where each row is formatted as [time, x1, y1, x2, y2]. Only
indices 1:5 will be used as the two points P1 = [x1, y1] and P2 = [x2, y2] defining the line
(or LoR).

grid_x
[numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_x parameter is a one-
dimensional grid that delimits the pixels in the x-dimension. It must be sorted in ascending
order with equally-spaced numbers and length X + 1 (pixels.shape[0] + 1).

grid_y
[numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_y parameter is a one-
dimensional grid that delimits the pixels in the y-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Y + 1 (pixels.shape[1] + 1).

Notes

This function is an adaptation of a widely-used algorithm [1], optimised for PEPT LoRs traversal.

Examples

The input parameters can be easily generated using numpy before calling the function. For example, if a plane
of 300 x 400 is split into 30 x 40 pixels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse2d
>>>
>>> plane = [300, 400]
>>> number_of_pixels = [30, 40]
>>> pixels = np.zeros(number_of_pixels)

The grid has one extra element than the number of pixels. For example, 5 pixels between 0 and 5 would be
delimited by the grid [0, 1, 2, 3, 4, 5] which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, plane[0], number_of_pixels[0] + 1)
>>> grid_y = np.linspace(0, plane[1], number_of_pixels[1] + 1)
>>>
>>> random_lines = np.random.random((100, 5)) * 100

Calling traverse2d will modify pixels in-place.

>>> traverse2d(pixels, random_lines, grid_x, grid_y)

230 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64


PEPT Documentation, Release 0.5.2

pept.utilities.traverse3d

pept.utilities.traverse3d(double[:, :, :] voxels, const double[:, :] lines, const double[:] grid_x, const
double[:] grid_y, const double[:] grid_z)→ void

Fast voxel traversal for 3D lines (or LoRs).

Function Signature:
traverse3d(

long[:, :, :] voxels, # Initialised!
double[:, :] lines, # Has exactly 7 columns!
double[:] grid_x, # Has voxels.shape[0] + 1 elements!
double[:] grid_y, # Has voxels.shape[1] + 1 elements!
double[:] grid_z # Has voxels.shape[2] + 1 elements!

)

This function computes the number of lines that passes through each voxel, saving the result in voxels. It does
so in an efficient manner, in which for every line, only the voxels that is passes through are traversed.

As it is highly optimised, this function does not perform any checks on the validity of the input data. Please check
the parameters before calling traverse3d, as it WILL segfault on wrong input data. Details are given below, along
with an example call.

Parameters
voxels

[numpy.ndarray(dtype = numpy.float64, ndim = 3)] The voxels parameter is a
numpy.ndarray of shape (X, Y, Z) that has been initialised to zeros before the function call.
The values will be modified in-place in the function to reflect the number of lines that pass
through each voxel.

lines
[numpy.ndarray(dtype = numpy.float64, ndim = 2)] The lines parameter is a
numpy.ndarray of shape(N, 7), where each row is formatted as [time, x1, y1, z1, x2, y2,
z2]. Only indices 1:7 will be used as the two points P1 = [x1, y1, z2] and P2 = [x2, y2, z2]
defining the line (or LoR).

grid_x
[numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_x parameter is a one-
dimensional grid that delimits the voxels in the x-dimension. It must be sorted in ascending
order with equally-spaced numbers and length X + 1 (voxels.shape[0] + 1).

grid_y
[numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_y parameter is a one-
dimensional grid that delimits the voxels in the y-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Y + 1 (voxels.shape[1] + 1).

grid_z
[numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_z parameter is a one-
dimensional grid that delimits the voxels in the z-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Z + 1 (voxels.shape[2] + 1).

5.3. Manual 231

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64


PEPT Documentation, Release 0.5.2

Notes

This function is an adaptation of a widely-used algorithm [1], optimised for PEPT LoRs traversal.

Examples

The input parameters can be easily generated using numpy before calling the function. For example, if a volume
of 300 x 400 x 500 is split into 30 x 40 x 50 voxels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse3d
>>>
>>> volume = [300, 400, 500]
>>> number_of_voxels = [30, 40, 50]
>>> voxels = np.zeros(number_of_voxels)

The grid has one extra element than the number of voxels. For example, 5 voxels between 0 and 5 would be
delimited by the grid [0, 1, 2, 3, 4, 5] which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, volume[0], number_of_voxels[0] + 1)
>>> grid_y = np.linspace(0, volume[1], number_of_voxels[1] + 1)
>>> grid_z = np.linspace(0, volume[2], number_of_voxels[2] + 1)
>>>
>>> random_lines = np.random.random((100, 7)) * 300

Calling traverse3d will modify voxels in-place.

>>> traverse3d(voxels, random_lines, grid_x, grid_y, grid_z)

pept.utilities.ChunkReader

class pept.utilities.ChunkReader(filepath_or_buffer, chunksize, skiprows=None, nrows=None,
dtype=<class 'float'>, sep='\\s+', header=None, engine='c',
na_filter=False, quoting=3, memory_map=True, **kwargs)

Bases: object

Class for fast, on-demand reading / parsing and iteration over chunks of data from CSV files.

This is an abstraction above pandas.read_csv for easy and fast iteration over chunks of data from a CSV file. The
chunks can be accessed using normal iteration (for chunk in reader: . . . ) and subscripting (reader[0]).

The chunks are read lazily, only upon access. It is therefore a more efficient alternative to read_csv for large files
(> 1.000.000 lines). For convenience, this class configures some default parameters for pandas.read_csv for fast
reading and parsing of usual PEPT data.

Most importantly, it reads chunks containing chunksize lines from a space-separated values file at
filepath_or_buffer, optionally skipping skiprows lines and reading in at most nrows lines. It returns
numpy.ndarray`s with `float values.

Raises
IndexError

Upon access to a non-existent chunk using subscript notation (i.e. data[100] when there are
50 chunks).

See also:

232 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#IndexError


PEPT Documentation, Release 0.5.2

pept.utilities.read_csv
Fast CSV file reading into numpy arrays.

pept.LineData
Encapsulate LoRs for ease of iteration and plotting.

pept.PointData
Encapsulate points for ease of iteration and plotting.

Examples

Say “data.csv” contains 1_000_000 lines of data. Read chunks of 10_000 lines as a time, skipping the first
100_000:

>>> from pept.utilities import ChunkReader
>>> chunks = ChunkReader("data.csv", 10_000, skiprows = 100_000)
>>> len(chunks) # 90 chunks
>>> chunks.file_lines # 1_000_000

Normal iteration:

>>> for chunk in chunks:
>>> ... # neat operations

Access a single chunk using subscripting:

>>> chunks[0] # First chunk
>>> chunks[-1] # Last chunk
>>> chunks[100] # IndexError

Attributes
filepath_or_buffer

[str, path object or file-like object] Any valid string path is acceptable. The string
could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be file://localhost/path/to/table.csv. If you want to pass in a path
object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a read()
method, such as a file handler (e.g. via builtin open function) or StringIO.

number_of_chunks
[int] The number of chunks (also returned when using the len method), taking into account
the lines skipped (skiprows), the number of lines in the file (file_lines) and the maximum
number of lines to be read (nrows).

file_lines
[int] The number of lines in the file pointed at by filepath_or_buffer.

chunksize
[int] The number of lines in a chunk of data.

skiprows
[int] The number of lines to be skipped at the beginning of the file.

nrows
[int] The maximum number of lines to be read. Only has an effect if it is less than file_lines
- skiprows. For example, if a file has 10 lines and skiprows = 5 and chunksize = 5, even if
nrows were to be 20, the number_of_chunks should still be 1.

5.3. Manual 233

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int


PEPT Documentation, Release 0.5.2

__init__(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+',
header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

ChunkReader class constructor.

Parameters
filepath_or_buffer

[str, path object or file-like object] Any valid string path to a local file is acceptable.
If you want to read in lines from an online location (i.e. using a URL), you should use
pept.utilities.read_csv. If you want to pass in a path object, pandas accepts any os.PathLike.
By file-like object, we refer to objects with a read() method, such as a file handler (e.g. via
builtin open function) or StringIO.

chunksize
[int] Number of lines read in a chunk of data.

skiprows
[list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number of
lines to skip (int) at the start of the file.

nrows
[int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype
[Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep
[str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header
[int, list of int, “infer”, optional] Row number(s) to use as the column names, and the
start of the data. By default assume there is no header present (i.e. header = None).

engine
[{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the python
engine is currently more feature-complete.

na_filter
[bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting
[int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting
behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map
[bool, default True] If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using this option can improve
performance because there is no longer any I/O overhead.

**kwargs
[optional] Extra keyword arguments that will be passed to pandas.read_csv.

Raises

234 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True


PEPT Documentation, Release 0.5.2

EOFError
[End Of File Error] If skiprows >= number_of_lines.

Methods

__init__(filepath_or_buffer, chunksize[, ...]) ChunkReader class constructor.

Attributes

chunksize

file_lines

nrows

number_of_chunks

skiprows

property number_of_chunks

property file_lines

property chunksize

property skiprows

property nrows

pept.simulation

pept.simulation.Simulator(trajectory, ...[, ...]) Simulate PEPT data.

pept.simulation.Simulator

class pept.simulation.Simulator(trajectory, sampling_times, shape_function, separation=712,
decay_energy=0.6335, Zeff=7.22, Aeff=13, x_max=500, y_max=500)

Bases: object

Simulate PEPT data.

__init__(trajectory, sampling_times, shape_function, separation=712, decay_energy=0.6335, Zeff=7.22,
Aeff=13, x_max=500, y_max=500)

Simulator class constructor.

5.3. Manual 235

https://docs.python.org/3/library/functions.html#object


PEPT Documentation, Release 0.5.2

Methods

__init__(trajectory, sampling_times, ...[, ...]) Simulator class constructor.
add_noise(noise_ratio)

add_noise_and_spread(noise_ratio[, ...])

add_spread([max_spread, depth])

change_sampling_times(new_sampling_times)

change_shape(new_shape_function)

change_trajectory(new_trajectory)

simulate()

write_csv(fname)

write_noise_csv(fname)

simulate()

add_noise(noise_ratio)

add_spread(max_spread=4, depth=16)

add_noise_and_spread(noise_ratio, max_spread=4, depth=16)

change_trajectory(new_trajectory)

change_sampling_times(new_sampling_times)

change_shape(new_shape_function)

write_csv(fname)

write_noise_csv(fname)

5.4 Contributing

The pept library is not a one-man project; it is being built, improved and extended continuously (directly or indirectly)
by an international team of researchers of diverse backgrounds - including programmers, mathematicians and chemical
/ mechanical / nuclear engineers. Want to contribute and become a PEPTspert yourself? Great, join the team!

There are multiple ways to help:

• Open an issue mentioning any improvement you think pept could benefit from.

• Write a tutorial or share scripts you’ve developed that we can add to the pept documentation to help other people
in the future.

• Share your PEPT-related algorithms - tracking, post-processing, visualisation, anything really! - so everybody
can benefit from them.

236 Chapter 5. Indices and tables



PEPT Documentation, Release 0.5.2

Want to be a superhero and contribute code directly to the library itself? Grand - fork the project, add your code and
submit a pull request (if that sounds like gibberish but you’re an eager programmer, check this article). We are more
than happy to work with you on integrating your code into the library and, if helpful, we can schedule a screen-to-screen
meeting for a more in-depth discussion about the pept package architecture.

Naturally, anything you contribute to the library will respect your authorship - protected by the strong GPL v3.0 open-
source license (see the “Licensing” section below). If you include published work, please add a pointer to your publi-
cation in the code documentation.

5.4.1 Licensing

The pept package is GPL v3.0 licensed. In non-lawyer terms, the key points of this license are:

• You can view, use, copy and modify this code _freely_.

• Your modifications must _also_ be licensed with GPL v3.0 or later.

• If you share your modifications with someone, you have to include the source code as well.

Essentially do whatever you want with the code, but don’t try selling it saying it’s yours :). This is a community-driven
project building upon many other wonderful open-source projects (NumPy, Plotly, even Python itself!) without which
pept simply would not have been possible. GPL v3.0 is indeed a very strong copyleft license; it was deliberately chosen
to maintain the openness and transparency of great software and progress, and respect the researchers pushing PEPT
forward. Frankly, open collaboration is way more efficient than closed, for-profit competition.

5.5 Citing

If you used this codebase or any software making use of it in a scientific publication, we ask you to cite the following
paper:

Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of
Scientific Instruments. 2020 Jan 1;91(1):013329. https://doi.org/10.1063/1.5129251

Because pept is a project bringing together the expertise of many people, it hosts multiple algorithms that were de-
veloped and published in other papers. Please check the documentation of the pept algorithms you are using in your
research and cite the original papers mentioned accordingly.

5.5.1 References

Papers presenting PEPT algorithms included in this library:1,2,3.

Pages

• genindex

• modindex

• search

1 Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron emission particle tracking-a technique for studying flow within
engineering equipment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment. 1993 Mar 10;326(3):592-607.

2 Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of Scientific Instruments. 2020 Jan
1;91(1):013329.

3 Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle tracking with multiple tracers. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017 Jan 21;843:22-8.

5.5. Citing 237

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests
https://choosealicense.com/licenses/gpl-3.0/
https://doi.org/10.1063/1.5129251


PEPT Documentation, Release 0.5.2

238 Chapter 5. Indices and tables



BIBLIOGRAPHY

[1] Guida A. Positron emission particle tracking applied to solid-liquid mixing in mechanically agitated vessels (Doc-
toral dissertation, University of Birmingham).

[1] Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing. InEurographics 1987 Aug 24 (Vol. 87, No.
3, pp. 3-10).

[1] Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing. InEurographics 1987 Aug 24 (Vol. 87, No.
3, pp. 3-10)..

239



PEPT Documentation, Release 0.5.2

240 Bibliography



PYTHON MODULE INDEX

p
pept.plots, 199
pept.processing, 164
pept.scanners, 90
pept.simulation, 235
pept.tracking, 98
pept.utilities, 221

241



PEPT Documentation, Release 0.5.2

242 Python Module Index



INDEX

Symbols
__init__() (pept.AdaptiveWindow method), 76
__init__() (pept.LineData method), 36
__init__() (pept.Pipeline method), 72
__init__() (pept.Pixels method), 51
__init__() (pept.PointData method), 44
__init__() (pept.TimeWindow method), 75
__init__() (pept.Voxels method), 59
__init__() (pept.base.Filter method), 82
__init__() (pept.base.IterableSamples method), 78
__init__() (pept.base.LineDataFilter method), 87
__init__() (pept.base.PEPTObject method), 76
__init__() (pept.base.PointDataFilter method), 85
__init__() (pept.base.Reducer method), 84
__init__() (pept.base.Transformer method), 81
__init__() (pept.base.VoxelsFilter method), 88
__init__() (pept.plots.PlotlyGrapher method), 202
__init__() (pept.plots.PlotlyGrapher2D method), 212
__init__() (pept.processing.AutoCorrelation method),

194
__init__() (pept.processing.DynamicProbability2D

method), 165
__init__() (pept.processing.DynamicProbability3D

method), 168
__init__() (pept.processing.LaceyColors method), 182
__init__() (pept.processing.LaceyColorsLinear

method), 185
__init__() (pept.processing.RelativeDeviations

method), 188
__init__() (pept.processing.RelativeDeviationsLinear

method), 191
__init__() (pept.processing.ResidenceDistribution2D

method), 171
__init__() (pept.processing.ResidenceDistribution3D

method), 174
__init__() (pept.processing.SpatialProjections

method), 197
__init__() (pept.processing.VectorField2D method),

176
__init__() (pept.processing.VectorField3D method),

179
__init__() (pept.processing.VectorGrid2D method),

178
__init__() (pept.processing.VectorGrid3D method),

180
__init__() (pept.scanners.ADACGeometricEfficiency

method), 96
__init__() (pept.simulation.Simulator method), 235
__init__() (pept.tracking.BirminghamMethod

method), 134
__init__() (pept.tracking.Centroids method), 109
__init__() (pept.tracking.Condition method), 113
__init__() (pept.tracking.Cutpoints method), 137
__init__() (pept.tracking.CutpointsToF method), 158
__init__() (pept.tracking.Debug method), 99
__init__() (pept.tracking.FPI method), 146
__init__() (pept.tracking.GaussianDensity method),

160
__init__() (pept.tracking.GroupBy method), 107
__init__() (pept.tracking.HDBSCAN method), 143
__init__() (pept.tracking.Interpolate method), 125
__init__() (pept.tracking.LinesCentroids method), 111
__init__() (pept.tracking.Minpoints method), 140
__init__() (pept.tracking.OptimizeWindow method),

102
__init__() (pept.tracking.OutOfViewFilter method),

129
__init__() (pept.tracking.Reconnect method), 152
__init__() (pept.tracking.Remove method), 117
__init__() (pept.tracking.RemoveStatic method), 131
__init__() (pept.tracking.Reorient method), 127
__init__() (pept.tracking.SamplesCondition method),

115
__init__() (pept.tracking.Segregate method), 150
__init__() (pept.tracking.SplitLabels method), 105
__init__() (pept.tracking.Stack method), 104
__init__() (pept.tracking.Swap method), 119
__init__() (pept.tracking.TimeOfFlight method), 156
__init__() (pept.tracking.Velocity method), 162
__init__() (pept.tracking.Voxelize method), 122
__init__() (pept.utilities.ChunkReader method), 233

A
adac_forte() (in module pept.scanners), 90

243



PEPT Documentation, Release 0.5.2

ADACGeometricEfficiency (class in pept.scanners), 94
AdaptiveWindow (class in pept), 75
add_image() (pept.plots.PlotlyGrapher2D method), 219
add_lines() (pept.Pixels method), 57
add_lines() (pept.plots.PlotlyGrapher method), 205
add_lines() (pept.plots.PlotlyGrapher2D method), 217
add_lines() (pept.Voxels method), 70
add_noise() (pept.simulation.Simulator method), 236
add_noise_and_spread() (pept.simulation.Simulator

method), 236
add_pixels() (pept.plots.PlotlyGrapher method), 207
add_pixels() (pept.plots.PlotlyGrapher2D method),

218
add_points() (pept.plots.PlotlyGrapher method), 204
add_points() (pept.plots.PlotlyGrapher2D method),

216
add_spread() (pept.simulation.Simulator method), 236
add_timeseries() (pept.plots.PlotlyGrapher2D

method), 215
add_trace() (pept.plots.PlotlyGrapher method), 209
add_trace() (pept.plots.PlotlyGrapher2D method), 219
add_traces() (pept.plots.PlotlyGrapher method), 209
add_traces() (pept.plots.PlotlyGrapher2D method),

219
add_voxels() (pept.plots.PlotlyGrapher method), 208
append_indices (pept.tracking.Cutpoints property),

139
append_indices (pept.tracking.CutpointsToF prop-

erty), 159
append_indices (pept.tracking.Minpoints property),

143
attrs (pept.base.IterableSamples property), 79
attrs (pept.LineData property), 39
attrs (pept.Pixels property), 53
attrs (pept.PointData property), 47
attrs (pept.Voxels property), 61
AutoCorrelation (class in pept.processing), 193

B
BirminghamMethod (class in pept.tracking), 133

C
centroid() (pept.tracking.LinesCentroids static

method), 111
Centroids (class in pept.tracking), 109
change_sampling_times() (pept.simulation.Simulator

method), 236
change_shape() (pept.simulation.Simulator method),

236
change_trajectory() (pept.simulation.Simulator

method), 236
ChunkReader (class in pept.utilities), 232
chunksize (pept.utilities.ChunkReader property), 235
columns (pept.base.IterableSamples property), 79

columns (pept.LineData property), 39
columns (pept.PointData property), 47
columns (pept.tracking.Remove property), 118
Condition (class in pept.tracking), 113
conditions (pept.tracking.Condition property), 113
conditions (pept.tracking.SamplesCondition property),

116
copy() (pept.base.Filter method), 82
copy() (pept.base.IterableSamples method), 79
copy() (pept.base.LineDataFilter method), 87
copy() (pept.base.PEPTObject method), 76
copy() (pept.base.PointDataFilter method), 86
copy() (pept.base.Reducer method), 84
copy() (pept.base.Transformer method), 81
copy() (pept.base.VoxelsFilter method), 89
copy() (pept.LineData method), 39
copy() (pept.Pipeline method), 73
copy() (pept.Pixels method), 54
copy() (pept.plots.PlotlyGrapher method), 209
copy() (pept.PointData method), 47
copy() (pept.processing.AutoCorrelation method), 195
copy() (pept.processing.DynamicProbability2D

method), 166
copy() (pept.processing.DynamicProbability3D

method), 168
copy() (pept.processing.LaceyColors method), 183
copy() (pept.processing.LaceyColorsLinear method),

185
copy() (pept.processing.RelativeDeviations method),

188
copy() (pept.processing.RelativeDeviationsLinear

method), 191
copy() (pept.processing.ResidenceDistribution2D

method), 171
copy() (pept.processing.ResidenceDistribution3D

method), 174
copy() (pept.processing.SpatialProjections method),

198
copy() (pept.processing.VectorField2D method), 176
copy() (pept.processing.VectorField3D method), 179
copy() (pept.scanners.ADACGeometricEfficiency

method), 96
copy() (pept.tracking.BirminghamMethod method), 135
copy() (pept.tracking.Centroids method), 110
copy() (pept.tracking.Condition method), 113
copy() (pept.tracking.Cutpoints method), 138
copy() (pept.tracking.CutpointsToF method), 159
copy() (pept.tracking.Debug method), 100
copy() (pept.tracking.FPI method), 147
copy() (pept.tracking.GaussianDensity method), 161
copy() (pept.tracking.GroupBy method), 108
copy() (pept.tracking.HDBSCAN method), 143
copy() (pept.tracking.Interpolate method), 125
copy() (pept.tracking.LinesCentroids method), 111

244 Index



PEPT Documentation, Release 0.5.2

copy() (pept.tracking.Minpoints method), 142
copy() (pept.tracking.OptimizeWindow method), 102
copy() (pept.tracking.OutOfViewFilter method), 129
copy() (pept.tracking.Reconnect method), 152
copy() (pept.tracking.Remove method), 118
copy() (pept.tracking.RemoveStatic method), 131
copy() (pept.tracking.Reorient method), 127
copy() (pept.tracking.SamplesCondition method), 116
copy() (pept.tracking.Segregate method), 150
copy() (pept.tracking.SplitLabels method), 106
copy() (pept.tracking.Stack method), 104
copy() (pept.tracking.Swap method), 120
copy() (pept.tracking.TimeOfFlight method), 156
copy() (pept.tracking.Velocity method), 163
copy() (pept.tracking.Voxelize method), 123
copy() (pept.Voxels method), 62
create_figure() (pept.plots.PlotlyGrapher method),

203
create_figure() (pept.plots.PlotlyGrapher2D

method), 214
cube_trace() (pept.Voxels method), 66
cubes_traces() (pept.Voxels method), 67
cutoffs (pept.tracking.Cutpoints property), 139
cutoffs (pept.tracking.CutpointsToF property), 159
cutoffs (pept.tracking.Minpoints property), 143
Cutpoints (class in pept.tracking), 136
CutpointsToF (class in pept.tracking), 157

D
data (pept.base.IterableSamples property), 79
data (pept.LineData property), 39
data (pept.PointData property), 47
Debug (class in pept.tracking), 99
distance_matrix() (pept.tracking.LinesCentroids

static method), 111
DynamicProbability2D (class in pept.processing), 164
DynamicProbability3D (class in pept.processing), 167

E
eg() (pept.scanners.ADACGeometricEfficiency method),

96
equalise_axes() (pept.plots.PlotlyGrapher method),

209
equalise_axes() (pept.plots.PlotlyGrapher2D

method), 220
equalise_separate() (pept.plots.PlotlyGrapher2D

method), 220
evaluate() (pept.tracking.OptimizeWindow method),

103
extra_attrs() (pept.base.IterableSamples method), 79
extra_attrs() (pept.LineData method), 39
extra_attrs() (pept.PointData method), 47

F
fig (pept.plots.PlotlyGrapher property), 204
fig (pept.plots.PlotlyGrapher2D property), 215
file_lines (pept.utilities.ChunkReader property), 235
Filter (class in pept.base), 82
filters (pept.Pipeline property), 73
find_cutpoints() (in module pept.utilities), 221
find_minpoints() (in module pept.utilities), 223
fit() (pept.base.Filter method), 82
fit() (pept.base.LineDataFilter method), 87
fit() (pept.base.PointDataFilter method), 85
fit() (pept.base.Reducer method), 84
fit() (pept.base.VoxelsFilter method), 89
fit() (pept.Pipeline method), 73
fit() (pept.processing.AutoCorrelation method), 195
fit() (pept.processing.DynamicProbability2D method),

166
fit() (pept.processing.DynamicProbability3D method),

168
fit() (pept.processing.LaceyColors method), 183
fit() (pept.processing.LaceyColorsLinear method), 185
fit() (pept.processing.RelativeDeviations method), 188
fit() (pept.processing.RelativeDeviationsLinear

method), 191
fit() (pept.processing.ResidenceDistribution2D

method), 171
fit() (pept.processing.ResidenceDistribution3D

method), 174
fit() (pept.processing.SpatialProjections method), 198
fit() (pept.processing.VectorField2D method), 176
fit() (pept.processing.VectorField3D method), 179
fit() (pept.tracking.BirminghamMethod method), 135
fit() (pept.tracking.Centroids method), 110
fit() (pept.tracking.Condition method), 114
fit() (pept.tracking.Cutpoints method), 138
fit() (pept.tracking.CutpointsToF method), 159
fit() (pept.tracking.Debug method), 101
fit() (pept.tracking.FPI method), 147
fit() (pept.tracking.GaussianDensity method), 161
fit() (pept.tracking.GroupBy method), 108
fit() (pept.tracking.HDBSCAN method), 144
fit() (pept.tracking.Interpolate method), 125
fit() (pept.tracking.LinesCentroids method), 111
fit() (pept.tracking.Minpoints method), 142
fit() (pept.tracking.OptimizeWindow method), 102
fit() (pept.tracking.OutOfViewFilter method), 129
fit() (pept.tracking.Reconnect method), 152
fit() (pept.tracking.Remove method), 118
fit() (pept.tracking.RemoveStatic method), 132
fit() (pept.tracking.Reorient method), 127
fit() (pept.tracking.SamplesCondition method), 116
fit() (pept.tracking.Segregate method), 150
fit() (pept.tracking.SplitLabels method), 106
fit() (pept.tracking.Stack method), 104

Index 245



PEPT Documentation, Release 0.5.2

fit() (pept.tracking.Swap method), 120
fit() (pept.tracking.TimeOfFlight method), 156
fit() (pept.tracking.Velocity method), 163
fit() (pept.tracking.Voxelize method), 123
fit_sample() (pept.base.Filter method), 82
fit_sample() (pept.base.LineDataFilter method), 87
fit_sample() (pept.base.PointDataFilter method), 86
fit_sample() (pept.base.VoxelsFilter method), 89
fit_sample() (pept.Pipeline method), 73
fit_sample() (pept.tracking.BirminghamMethod

method), 134
fit_sample() (pept.tracking.Centroids method), 109
fit_sample() (pept.tracking.Condition method), 113
fit_sample() (pept.tracking.Cutpoints method), 139
fit_sample() (pept.tracking.CutpointsToF method),

159
fit_sample() (pept.tracking.FPI method), 147
fit_sample() (pept.tracking.GaussianDensity method),

162
fit_sample() (pept.tracking.HDBSCAN method), 144
fit_sample() (pept.tracking.Interpolate method), 125
fit_sample() (pept.tracking.LinesCentroids method),

111
fit_sample() (pept.tracking.Minpoints method), 143
fit_sample() (pept.tracking.Remove method), 118
fit_sample() (pept.tracking.SplitLabels method), 106
fit_sample() (pept.tracking.Swap method), 120
fit_sample() (pept.tracking.TimeOfFlight method),

156
fit_sample() (pept.tracking.Velocity method), 163
fit_sample() (pept.tracking.Voxelize method), 123
format_fig() (in module pept.plots), 199
FPI (class in pept.tracking), 145
from_lines() (pept.Pixels static method), 58
from_lines() (pept.Voxels static method), 70
from_physical() (pept.Pixels method), 54
from_physical() (pept.Voxels method), 62

G
GaussianDensity (class in pept.tracking), 160
group_by_column() (in module pept.utilities), 224
GroupBy (class in pept.tracking), 107

H
HDBSCAN (class in pept.tracking), 143
heatmap_trace() (pept.Pixels method), 56
heatmap_trace() (pept.Voxels method), 69
hidden_attrs() (pept.base.IterableSamples method),

79
hidden_attrs() (pept.LineData method), 39
hidden_attrs() (pept.PointData method), 47
histogram() (in module pept.plots), 199

I
Interpolate (class in pept.tracking), 124
IterableSamples (class in pept.base), 78

L
LaceyColors (class in pept.processing), 181
LaceyColorsLinear (class in pept.processing), 184
LineData (class in pept), 32
LineDataFilter (class in pept.base), 87
lines (pept.LineData property), 38
lines_trace() (pept.plots.PlotlyGrapher static

method), 205
lines_trace() (pept.plots.PlotlyGrapher2D static

method), 217
LinesCentroids (class in pept.tracking), 111
load() (in module pept), 31
load() (pept.base.Filter static method), 82
load() (pept.base.IterableSamples static method), 80
load() (pept.base.LineDataFilter static method), 87
load() (pept.base.PEPTObject static method), 77
load() (pept.base.PointDataFilter static method), 86
load() (pept.base.Reducer static method), 84
load() (pept.base.Transformer static method), 81
load() (pept.base.VoxelsFilter static method), 89
load() (pept.LineData static method), 39
load() (pept.Pipeline static method), 73
load() (pept.Pixels static method), 54
load() (pept.plots.PlotlyGrapher static method), 210
load() (pept.PointData static method), 47
load() (pept.processing.AutoCorrelation static method),

195
load() (pept.processing.DynamicProbability2D static

method), 166
load() (pept.processing.DynamicProbability3D static

method), 168
load() (pept.processing.LaceyColors static method),

183
load() (pept.processing.LaceyColorsLinear static

method), 185
load() (pept.processing.RelativeDeviations static

method), 188
load() (pept.processing.RelativeDeviationsLinear static

method), 192
load() (pept.processing.ResidenceDistribution2D static

method), 171
load() (pept.processing.ResidenceDistribution3D static

method), 174
load() (pept.processing.SpatialProjections static

method), 198
load() (pept.processing.VectorField2D static method),

176
load() (pept.processing.VectorField3D static method),

179

246 Index



PEPT Documentation, Release 0.5.2

load() (pept.scanners.ADACGeometricEfficiency static
method), 96

load() (pept.tracking.BirminghamMethod static
method), 135

load() (pept.tracking.Centroids static method), 110
load() (pept.tracking.Condition static method), 114
load() (pept.tracking.Cutpoints static method), 138
load() (pept.tracking.CutpointsToF static method), 159
load() (pept.tracking.Debug static method), 100
load() (pept.tracking.FPI static method), 147
load() (pept.tracking.GaussianDensity static method),

161
load() (pept.tracking.GroupBy static method), 108
load() (pept.tracking.HDBSCAN static method), 144
load() (pept.tracking.Interpolate static method), 125
load() (pept.tracking.LinesCentroids static method), 111
load() (pept.tracking.Minpoints static method), 142
load() (pept.tracking.OptimizeWindow static method),

102
load() (pept.tracking.OutOfViewFilter static method),

129
load() (pept.tracking.Reconnect static method), 152
load() (pept.tracking.Remove static method), 118
load() (pept.tracking.RemoveStatic static method), 132
load() (pept.tracking.Reorient static method), 127
load() (pept.tracking.SamplesCondition static method),

116
load() (pept.tracking.Segregate static method), 150
load() (pept.tracking.SplitLabels static method), 106
load() (pept.tracking.Stack static method), 104
load() (pept.tracking.Swap static method), 120
load() (pept.tracking.TimeOfFlight static method), 156
load() (pept.tracking.Velocity static method), 163
load() (pept.tracking.Voxelize static method), 123
load() (pept.Voxels static method), 62
lower (pept.Pixels property), 53
lower (pept.Voxels property), 61

M
make_video() (in module pept.plots), 200
max_distance (pept.tracking.Cutpoints property), 139
max_distance (pept.tracking.CutpointsToF property),

159
max_distance (pept.tracking.Minpoints property), 143
Minpoints (class in pept.tracking), 139
modular_camera() (in module pept.scanners), 97
module

pept.plots, 199
pept.processing, 164
pept.scanners, 90
pept.simulation, 235
pept.tracking, 98
pept.utilities, 221

N
nrows (pept.utilities.ChunkReader property), 235
num_lines (pept.tracking.Minpoints property), 142
number_of_chunks (pept.utilities.ChunkReader prop-

erty), 235
number_of_lines() (in module pept.utilities), 225
number_of_voxels (pept.tracking.Voxelize property),

123

O
optimise() (pept.Pipeline method), 73
OptimizeWindow (class in pept.tracking), 101
OutOfViewFilter (class in pept.tracking), 128
overlap (pept.base.IterableSamples property), 79
overlap (pept.LineData property), 40
overlap (pept.PointData property), 47

P
parallel_map_file() (in module pept.utilities), 228
parallel_screens() (in module pept.scanners), 92
pept.plots

module, 199
pept.processing

module, 164
pept.scanners

module, 90
pept.simulation

module, 235
pept.tracking

module, 98
pept.utilities

module, 221
PEPTObject (class in pept.base), 76
Pipeline (class in pept), 71
pixel_grids (pept.Pixels property), 53
pixel_size (pept.Pixels property), 53
Pixels (class in pept), 48
pixels (pept.Pixels property), 53
plot() (pept.LineData method), 38
plot() (pept.Pixels method), 57
plot() (pept.PointData method), 46
plot() (pept.Voxels method), 65
plot_volumetric() (pept.Voxels method), 66
PlotlyGrapher (class in pept.plots), 201
PlotlyGrapher2D (class in pept.plots), 211
PointData (class in pept), 40
PointDataFilter (class in pept.base), 85
points (pept.PointData property), 45
points_trace() (pept.plots.PlotlyGrapher static

method), 204
points_trace() (pept.plots.PlotlyGrapher2D static

method), 216
predict() (pept.tracking.LinesCentroids method), 111

Index 247



PEPT Documentation, Release 0.5.2

Q
quiver() (pept.processing.VectorGrid2D method), 178

R
read_csv() (in module pept), 30
read_csv() (in module pept.utilities), 225
read_csv_chunks() (in module pept.utilities), 226
Reconnect (class in pept.tracking), 151
Reducer (class in pept.base), 84
reducers (pept.Pipeline property), 73
RelativeDeviations (class in pept.processing), 186
RelativeDeviationsLinear (class in

pept.processing), 189
Remove (class in pept.tracking), 117
RemoveStatic (class in pept.tracking), 130
Reorient (class in pept.tracking), 126
ResidenceDistribution2D (class in pept.processing),

170
ResidenceDistribution3D (class in pept.processing),

172

S
sample_size (pept.base.IterableSamples property), 79
sample_size (pept.LineData property), 40
sample_size (pept.PointData property), 47
samples_indices (pept.base.IterableSamples prop-

erty), 79
samples_indices (pept.LineData property), 40
samples_indices (pept.PointData property), 47
SamplesCondition (class in pept.tracking), 115
save() (in module pept), 31
save() (pept.base.Filter method), 83
save() (pept.base.IterableSamples method), 80
save() (pept.base.LineDataFilter method), 88
save() (pept.base.PEPTObject method), 77
save() (pept.base.PointDataFilter method), 86
save() (pept.base.Reducer method), 84
save() (pept.base.Transformer method), 81
save() (pept.base.VoxelsFilter method), 89
save() (pept.LineData method), 40
save() (pept.Pipeline method), 74
save() (pept.Pixels method), 53
save() (pept.plots.PlotlyGrapher method), 210
save() (pept.PointData method), 47
save() (pept.processing.AutoCorrelation method), 195
save() (pept.processing.DynamicProbability2D

method), 166
save() (pept.processing.DynamicProbability3D

method), 169
save() (pept.processing.LaceyColors method), 183
save() (pept.processing.LaceyColorsLinear method),

186
save() (pept.processing.RelativeDeviations method),

189

save() (pept.processing.RelativeDeviationsLinear
method), 192

save() (pept.processing.ResidenceDistribution2D
method), 172

save() (pept.processing.ResidenceDistribution3D
method), 174

save() (pept.processing.SpatialProjections method),
198

save() (pept.processing.VectorField2D method), 177
save() (pept.processing.VectorField3D method), 180
save() (pept.scanners.ADACGeometricEfficiency

method), 97
save() (pept.tracking.BirminghamMethod method), 135
save() (pept.tracking.Centroids method), 110
save() (pept.tracking.Condition method), 114
save() (pept.tracking.Cutpoints method), 139
save() (pept.tracking.CutpointsToF method), 159
save() (pept.tracking.Debug method), 100
save() (pept.tracking.FPI method), 148
save() (pept.tracking.GaussianDensity method), 161
save() (pept.tracking.GroupBy method), 108
save() (pept.tracking.HDBSCAN method), 144
save() (pept.tracking.Interpolate method), 125
save() (pept.tracking.LinesCentroids method), 112
save() (pept.tracking.Minpoints method), 142
save() (pept.tracking.OptimizeWindow method), 102
save() (pept.tracking.OutOfViewFilter method), 130
save() (pept.tracking.Reconnect method), 153
save() (pept.tracking.Remove method), 119
save() (pept.tracking.RemoveStatic method), 132
save() (pept.tracking.Reorient method), 128
save() (pept.tracking.SamplesCondition method), 116
save() (pept.tracking.Segregate method), 151
save() (pept.tracking.SplitLabels method), 106
save() (pept.tracking.Stack method), 105
save() (pept.tracking.Swap method), 121
save() (pept.tracking.TimeOfFlight method), 157
save() (pept.tracking.Velocity method), 163
save() (pept.tracking.Voxelize method), 124
save() (pept.Voxels method), 61
scatter_trace() (pept.Voxels method), 68
Segregate (class in pept.tracking), 148
set_lims() (pept.tracking.Voxelize method), 123
show() (pept.plots.PlotlyGrapher method), 210
show() (pept.plots.PlotlyGrapher2D method), 220
simulate() (pept.simulation.Simulator method), 236
Simulator (class in pept.simulation), 235
skiprows (pept.utilities.ChunkReader property), 235
SpatialProjections (class in pept.processing), 196
SplitAll (in module pept.tracking), 107
SplitLabels (class in pept.tracking), 105
Stack (class in pept.tracking), 104
steps() (pept.Pipeline method), 73
Swap (class in pept.tracking), 119

248 Index



PEPT Documentation, Release 0.5.2

swaps (pept.tracking.Swap property), 120

T
TimeOfFlight (class in pept.tracking), 154
timeseries_trace() (pept.plots.PlotlyGrapher2D

static method), 215
TimeWindow (class in pept), 75
to_csv() (pept.LineData method), 38
to_csv() (pept.PointData method), 46
to_html() (pept.plots.PlotlyGrapher method), 211
to_html() (pept.plots.PlotlyGrapher2D method), 220
to_physical() (pept.Pixels method), 55
to_physical() (pept.Voxels method), 64
Transformer (class in pept.base), 81
transformers (pept.Pipeline property), 73
traverse2d() (in module pept.utilities), 229
traverse3d() (in module pept.utilities), 231

U
upper (pept.Pixels property), 53
upper (pept.Voxels property), 61

V
VectorField2D (class in pept.processing), 175
VectorField3D (class in pept.processing), 178
VectorGrid2D (class in pept.processing), 177
VectorGrid3D (class in pept.processing), 180
vectors() (pept.processing.VectorGrid2D method), 178
vectors() (pept.processing.VectorGrid3D method), 181
Velocity (class in pept.tracking), 162
voxel_grids (pept.Voxels property), 61
voxel_size (pept.Voxels property), 61
Voxelize (class in pept.tracking), 122
Voxels (class in pept), 58
voxels (pept.Voxels property), 61
VoxelsFilter (class in pept.base), 88
vtk() (pept.Voxels method), 66

W
window (pept.TimeWindow attribute), 75
write_csv() (pept.simulation.Simulator method), 236
write_noise_csv() (pept.simulation.Simulator

method), 236

X
xlabel() (pept.plots.PlotlyGrapher method), 204
xlabel() (pept.plots.PlotlyGrapher2D method), 215
xlim (pept.Pixels property), 53
xlim (pept.plots.PlotlyGrapher property), 204
xlim (pept.plots.PlotlyGrapher2D property), 215
xlim (pept.tracking.Voxelize property), 123
xlim (pept.Voxels property), 61

Y
ylabel() (pept.plots.PlotlyGrapher method), 204
ylabel() (pept.plots.PlotlyGrapher2D method), 215
ylim (pept.Pixels property), 53
ylim (pept.plots.PlotlyGrapher property), 204
ylim (pept.plots.PlotlyGrapher2D property), 215
ylim (pept.tracking.Voxelize property), 123
ylim (pept.Voxels property), 61

Z
zeros() (pept.Pixels static method), 53
zeros() (pept.Voxels static method), 62
zlabel() (pept.plots.PlotlyGrapher method), 204
zlim (pept.plots.PlotlyGrapher property), 204
zlim (pept.tracking.Voxelize property), 123
zlim (pept.Voxels property), 61

Index 249


	Positron Emission Particle Tracking
	Tutorials and Documentation
	Performance
	Copyright
	Indices and tables
	Getting Started
	Prerequisites
	Installation

	Tutorials
	Absolute Basics
	pept.LineData

	Saving / Loading Data
	Plotting
	Interactive 3D Plots
	Adding Colourbars
	Histogram of Tracking Errors
	Exporting Plotly Graphs as Images
	Modifying the Underlying Figure

	Initialising PEPT Scanner Data
	ADAC Forte
	Parallel Screens
	Modular Camera

	Adaptive Sampling
	The Birmingham Method
	Birmingham Method recipe
	Recipe with Trajectory Separation

	PEPT-ML
	PEPT-ML one pass of clustering recipe
	PEPT-ML second pass of clustering recipe
	PEPT-ML complete recipe
	Example of a Complex Processing Pipeline

	Feature Point Identification
	FPI Recipe

	Tracking Errors
	Histogram of Tracking Errors

	Trajectory Separation
	Segregate Points

	Filtering Data
	Remove
	Condition
	SamplesCondition
	GroupBy
	RemoveStatic

	Extracting Velocities
	Interpolating Timesteps

	Manual
	Base Functions
	pept.read_csv
	pept.load
	pept.save

	Base Classes
	pept.LineData
	pept.PointData
	pept.Pixels
	pept.Voxels
	pept.Pipeline

	Auxilliaries
	pept.TimeWindow
	pept.AdaptiveWindow
	Base / Abstract Classes (pept.base)
	pept.base.PEPTObject
	pept.base.IterableSamples
	pept.base.Transformer
	pept.base.Filter
	pept.base.Reducer
	pept.base.PointDataFilter
	pept.base.LineDataFilter
	pept.base.VoxelsFilter

	Initialising Scanner Data (pept.scanners)
	pept.scanners.adac_forte
	pept.scanners.parallel_screens
	pept.scanners.ADACGeometricEfficiency
	pept.scanners.modular_camera

	Tracking Algorithms (pept.tracking)
	Tracking Optimisation
	pept.tracking.Debug
	pept.tracking.OptimizeWindow

	General-Purpose Transformers
	pept.tracking.Stack
	pept.tracking.SplitLabels
	pept.tracking.SplitAll
	pept.tracking.GroupBy
	pept.tracking.Centroids
	pept.tracking.LinesCentroids
	pept.tracking.Condition
	pept.tracking.SamplesCondition
	pept.tracking.Remove
	pept.tracking.Swap

	Space Transformers
	pept.tracking.Voxelize
	pept.tracking.Interpolate
	pept.tracking.Reorient
	pept.tracking.OutOfViewFilter
	pept.tracking.RemoveStatic

	Tracer Locating Algorithms
	pept.tracking.BirminghamMethod
	pept.tracking.Cutpoints
	pept.tracking.Minpoints
	pept.tracking.HDBSCAN
	pept.tracking.FPI

	Trajectory Separation Algorithms
	pept.tracking.Segregate
	pept.tracking.Reconnect

	Time Of Flight Algorithms
	pept.tracking.TimeOfFlight
	pept.tracking.CutpointsToF
	pept.tracking.GaussianDensity

	Post Processing Algorithms
	pept.tracking.Velocity


	Post Processing (pept.processing)
	Probability / Residence Distributions
	pept.processing.DynamicProbability2D
	pept.processing.DynamicProbability3D
	pept.processing.ResidenceDistribution2D
	pept.processing.ResidenceDistribution3D

	Vector Grids
	pept.processing.VectorField2D
	pept.processing.VectorGrid2D
	pept.processing.VectorField3D
	pept.processing.VectorGrid3D

	Mixing Quantification
	pept.processing.LaceyColors
	pept.processing.LaceyColorsLinear
	pept.processing.RelativeDeviations
	pept.processing.RelativeDeviationsLinear
	pept.processing.AutoCorrelation
	pept.processing.SpatialProjections


	Visualisation (pept.plots)
	pept.plots.format_fig
	pept.plots.histogram
	pept.plots.make_video
	pept.plots.PlotlyGrapher
	pept.plots.PlotlyGrapher2D

	pept.utilities
	pept.utilities.find_cutpoints
	pept.utilities.find_minpoints
	pept.utilities.group_by_column
	pept.utilities.number_of_lines
	pept.utilities.read_csv
	pept.utilities.read_csv_chunks
	pept.utilities.parallel_map_file
	pept.utilities.traverse2d
	pept.utilities.traverse3d
	pept.utilities.ChunkReader

	pept.simulation
	pept.simulation.Simulator



	Contributing
	Licensing

	Citing
	References


	Bibliography
	Python Module Index
	Index

