

The PEPT Library’s Documentation

A Python library that unifies Positron Emission Particle Tracking
(PEPT) research, including tracking, simulation, data analysis and
visualisation tools.

Positron Emission Particle Tracking

PEPT is a technique developed at the University of Birmingham which allows the
non-invasive, three-dimensional tracking of one or more ‘tracer’ particles
through particulate, fluid or multiphase systems. The technique allows particle
or fluid motion to be tracked with sub-millimetre accuracy and sub-millisecond
temporal resolution and, due to its use of highly-penetrating 511keV gamma
rays, can be used to probe the internal dynamics of even large, dense,
optically opaque systems - making it ideal for industrial as well as scientific
applications.

PEPT is performed by radioactively labelling a particle with a positron-
emitting radioisotope such as fluorine-18 (18F) or gallium-68 (68Ga), and using
the back-to-back gamma rays produced by electron-positron annihilation events
in and around the tracer to triangulate its spatial position. Each detected
gamma ray represents a line of response (LoR).

[image: Transforming LoRs into trajectories using `pept`]
Transforming gamma rays, or lines of response (left) into individual tracer
trajectories (right) using the pept library. Depicted is experimental data of
two tracers rotating at 42 RPM, imaged using the University of Birmingham
Positron Imaging Centre’s parallel screens PEPT camera.

Tutorials and Documentation

A very fast-paced introduction to Python is available here (Google Colab tutorial link) [https://colab.research.google.com/drive/1Uq8Ppiv8jR-XSVsKZMcCUNuXW-l6n_RI?usp=sharing]; it is aimed at engineers whose background might be a few lines written MATLAB, as well as moderate C/C++ programmers.

A beginner-friendly tutorial for using the pept package is available here (Google Colab link) [https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO].

The links above point to Google Colaboratory, a Jupyter notebook-hosting website that lets you combine text with Python code, executing it on Google servers. Pretty neat, isn’t it?

Performance

Significant effort has been put into making the algorithms in this package as
fast as possible. Most computationally intensive code has been implemented in Cython, C or C++ and allows policy-based parallel execution, either on shared-memory machines using joblib / ThreadPoolExecutor, or on distributed computing clusters using mpi4py.futures.MPIPoolExecutor.

Copyright

Copyright (C) 2021 the pept developers. Until now, this library was built directly or indirectly through the brain-time of:

	Andrei Leonard Nicusan (University of Birmingham)

	Dr. Kit Windows-Yule (University of Birmingham)

	Dr. Sam Manger (University of Birmingham)

	Matthew Herald (University of Birmingham)

	Chris Jones (University of Birmingham)

	Mark Al-Shemmeri (University of Birmingham)

	Prof. David Parker (University of Birmingham)

	Dr. Antoine Renaud (University of Edinburgh)

	Dr. Cody Wiggins (Virginia Commonwealth University)

	Dawid Michał Hampel

	Dr. Tom Leadbeater

Thank you.

Indices and tables

Documentation

	Getting Started
	Prerequisites

	Installation

	Tutorials
	Absolute Basics

	Saving / Loading Data

	Plotting

	Initialising PEPT Scanner Data

	Adaptive Sampling

	The Birmingham Method

	PEPT-ML

	Feature Point Identification

	Tracking Errors

	Trajectory Separation

	Filtering Data

	Extracting Velocities

	Interpolating Timesteps

	Manual
	Base Functions

	Base Classes

	Auxilliaries

	Contributing
	Licensing

	Citing
	References

Pages

	Index

	Module Index

	Search Page

Getting Started

These instructions will help you get started with PEPT data analysis.

Prerequisites

This package supports Python 3.6 and above - it is built and tested for Python
3.6, 3.7 and 3.8 on Windows, Linux and macOS (thanks to conda-forge [https://conda-forge.org/], which is
awesome!).

You can install it using the batteries-included Anaconda [https://www.anaconda.com/products/individual] distribution or the
bare-bones Python [https://www.python.org/downloads/] interpreter. You can also check out our Python and pept
tutorials [https://github.com/uob-positron-imaging-centre/tutorials].

Installation

The easiest and quickest installation, if you are using Anaconda:

conda install -c conda-forge pept

You can also install the latest release version of pept from PyPI:

pip install --upgrade pept

Or you can install the development version from the GitHub repository:

pip install -U git+https://github.com/uob-positron-imaging-centre/pept

Tutorials

The main purpose of the PEPT library is to provide a common, consistent
foundation for PEPT-related algorithms, including tracer tracking,
visualisation and post-processing tools - such that they can be used
interchangeably, mixed and matched for any PEPT camera and system. Virtually
all PEPT processing routine follows these steps:

	Convert raw gamma camera / scanner data into 3D lines (i.e. the captured
gamma rays, or lines of response - LoRs).

	Take a sample of lines, locate tracer locations, then repeat for the next
samples.

	Separate out individual tracer trajectories.

	Visualise and post-process trajectories.

For these algorithm-agnostic steps, PEPT provides five base data structures
upon which the rest of the library is built:

	pept.LineData: general 3D line samples, formatted as [time, x1, y1, z1,
x2, y2, z2, extra…].

	pept.PointData: general 3D point samples, formatted as [time, x, y, z,
extra…].

	pept.Pixels: single 2D pixellised space with physical dimensions,
including fast line traversal.

	pept.Voxels: single 3D voxellised space with physical dimensions,
including fast line traversal.

For example, once you convert your PEPT data - from any scanner - into
pept.LineData, all the algorithms in this library can be used.

All the data structures above are built on top of NumPy and integrate natively
with the rest of the Python / SciPy ecosystem. The rest of the PEPT library is
organised into submodules:

	pept.scanners: converters between native scanner data and the base
data structures.

	pept.tracking: radioactive tracer tracking algorithms, e.g. the
Birmingham method, PEPT-ML, FPI.

	pept.plots: PEPT data visualisation subroutines.

	pept.utilities: general-purpose helpers, e.g. read_csv,
traverse3d.

	pept.processing: PEPT-oriented post-processing algorithms, e.g.
VectorField3D.

If you are new to the PEPT library, we recommend going through this interactive
online notebook, which introduces all the fundamental concepts of the library:

https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=sharing

Once you get the idea of LineData samples, Pipeline and
PlotlyGrapher, you can use these copy-pastable tutorials to build PEPT data
analysis pipelines tailored to your specific systems.

Pre-processing

	Absolute Basics
	pept.LineData

	Saving / Loading Data

	Plotting
	Interactive 3D Plots

	Adding Colourbars

	Histogram of Tracking Errors

	Exporting Plotly Graphs as Images

	Modifying the Underlying Figure

	Initialising PEPT Scanner Data
	ADAC Forte

	Parallel Screens

	Modular Camera

Tracking

	Adaptive Sampling

	The Birmingham Method
	Birmingham Method recipe

	Recipe with Trajectory Separation

	PEPT-ML
	PEPT-ML one pass of clustering recipe

	PEPT-ML second pass of clustering recipe

	PEPT-ML complete recipe

	Example of a Complex Processing Pipeline

	Feature Point Identification
	FPI Recipe

Post-processing

	Tracking Errors
	Histogram of Tracking Errors

	Trajectory Separation
	Segregate Points

	Filtering Data
	Remove

	Condition

	SamplesCondition

	GroupBy

	RemoveStatic

	Extracting Velocities

	Interpolating Timesteps

Absolute Basics

The main purpose of the pept library is to provide a common, consistent foundation for PEPT-related algorithms, including tracer tracking, visualisation and post-processing tools - such that they can be used interchangeably, mixed and matched for different systems. Virtually any PEPT processing routine follows these steps:

	Convert raw gamma camera / scanner data into 3D lines (i.e. the captured gamma rays, or lines of response - LoRs).

	Take a sample of lines, locate tracer locations, then repeat for the next samples.

	Separate out individual tracer trajectories.

	Visualise and post-process trajectories.

For these algorithm-agnostic steps, pept provides five base data structures upon which the rest of the library is built:

	pept.LineData [https://pept.readthedocs.io/en/latest/manual/generated/pept.LineData.html]: general 3D line samples, formatted as [time, x1, y1, z1, x2, y2, z2, extra…].

	pept.PointData [https://pept.readthedocs.io/en/latest/manual/generated/pept.PointData.html]: general 3D point samples, formatted as [time, x, y, z, extra…].

	pept.Pixels [https://pept.readthedocs.io/en/latest/manual/generated/pept.Pixels.html]: single 2D pixellised space with physical dimensions, including fast line traversal.

	pept.Voxels [https://pept.readthedocs.io/en/latest/manual/generated/pept.Voxels.html]: single 3D voxellised space with physical dimensions, including fast line traversal.

All the data structures above are built on top of NumPy and integrate natively with the rest of the Python / SciPy ecosystem. The rest of the pept library is organised into submodules:

	pept.scanners [https://pept.readthedocs.io/en/latest/manual/scanners.html]: converters between native scanner data and the base classes.

	pept.tracking [https://pept.readthedocs.io/en/latest/manual/tracking.html]: radioactive tracer tracking algorithms, e.g. the Birmingham method, PEPT-ML, FPI.

	pept.plots [https://pept.readthedocs.io/en/latest/manual/plots.html]: PEPT data visualisation subroutines.

	pept.utilities [https://pept.readthedocs.io/en/latest/manual/utilities.html]: general-purpose helpers, e.g. read_csv, traverse3d.

	pept.processing [https://pept.readthedocs.io/en/latest/manual/processing.html]: PEPT-oriented post-processing algorithms, e.g. occupancy2d.

pept.LineData [https://pept.readthedocs.io/en/latest/manual/generated/pept.LineData.html]

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each
defined by two points, regardless of the geometry of the scanner used. This
class is used to wrap LoRs (or any lines!), efficiently yielding samples of
lines of an adaptive sample_size and overlap.

It is an abstraction over PET / PEPT scanner geometries and data formats,
as once the raw LoRs (be they stored as binary, ASCII, etc.) are
transformed into the common LineData format, any tracking, analysis or
visualisation algorithm in the pept package can be used interchangeably.
Moreover, it provides a stable, user-friendly interface for iterating over
LoRs in samples - this is useful for tracking algorithms, as they
generally take a few LoRs (a sample), produce a tracer position, then
move to the next sample of LoRs, repeating the procedure. Using overlapping
samples is also useful for improving the tracking rate of the algorithms.

Here are some basic examples of creating and using LineData samples - you’re
very much invited to copy and run them!

Initialise a LineData instance containing 10 lines with a sample_size
of 3.

>>> import pept
>>> import numpy as np
>>> lines_raw = np.arange(70).reshape(10, 7)
>>> print(lines_raw)
[[0 1 2 3 4 5 6]
 [7 8 9 10 11 12 13]
 [14 15 16 17 18 19 20]
 [21 22 23 24 25 26 27]
 [28 29 30 31 32 33 34]
 [35 36 37 38 39 40 41]
 [42 43 44 45 46 47 48]
 [49 50 51 52 53 54 55]
 [56 57 58 59 60 61 62]
 [63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data
pept.LineData (samples: 3)

sample_size = 3
overlap = 0
lines =
 (rows: 10, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 ...
 [56. 57. ... 61. 62.]
 [63. 64. ... 68. 69.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Access samples using subscript notation. Notice how the samples are
consecutive, as overlap is 0 by default.

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 [14. 15. ... 19. 20.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[21. 22. ... 26. 27.]
 [28. 29. ... 33. 34.]
 [35. 36. ... 40. 41.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

Saving / Loading Data

All PEPT objects can be saved in an efficient binary format using pept.save and
pept.load:

import pept
import numpy as np

Create some dummy data
lines_raw = np.arange(70).reshape((10, 7)
lines = pept.LineData(lines_raw)

Save data
pept.save("data.pickle", lines)

Load data
lines_loaded = pept.load("data.pickle")

The binary approach has the advantage of preserving all your metadata saved in the object
instances - e.g. columns, sample_size - allowing the full state to be reloaded.

Matrix-like data like pept.LineData and pept.PointData can also be saved in a slower,
but human-readable CSV format using their class methods .to_csv; such tabular data can then
be reinitialised using pept.read_csv:

Save data in CSV format
lines.to_csv("data.csv")

Load data back - *this will be a simple NumPy array!*
lines_raw = pept.read_csv("data.csv")

Need to put the array back into a `pept.LineData`
lines = pept.LineData(lines_raw)

Plotting

Interactive 3D Plots

The easiest method of plotting 3D PEPT-like data is using the pept.plots.PlotlyGrapher
interactive grapher:

Plotting some example 3D lines
import pept
from pept.plots import PlotlyGrapher
import numpy as np

lines_raw = np.arange(70).reshape((10, 7))
lines = pept.LineData(lines_raw)

PlotlyGrapher().add_lines(lines).show()

Plotting some example 3D points
import pept
from pept.plots import PlotlyGrapher
import numpy as np

points_raw = np.arange(40).reshape((10, 4))
points = pept.PointData(points_raw)

PlotlyGrapher().add_points(points).show()

The PlotlyGrapher object allows straightforward subplots creation:

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(cols = 2)

grapher.add_lines(lines) # col = 1 by default
grapher.add_points(points, col = 2)

grapher.show()

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(rows = 2, cols = 2)

grapher.add_lines(lines, col = 2) # row = 1 by default
grapher.add_points(points, row = 2, col = 2)

grapher.show()

Adding Colourbars

By default, the last column of a dataset is used to colour-code the resulting points:

from pept.plots import PlotlyGrapher
PlotlyGrapher().add_points(point_data).show() # Colour-codes by the last column

You can change the column used to colour-code points using a numeric index (e.g. first column
colorbar_col = 0, second to last column colorbar_col = -2) or named column (e.g.
colorbar_col = "error"):

PlotlyGrapher().add_points(point_data, colorbar_col = -2).show()
PlotlyGrapher().add_points(point_data, colorbar_col = "label").show() # Coloured by trajectory
PlotlyGrapher().add_points(point_data, colorbar_col = "v").show() # Coloured by velocity

As a PlotlyGrapher will often manage multiple subplots, one shouldn’t include explicit
colourbars on the sides for each dataset plotted. Therefore, colourbars are hidden by default;
add a colourbar by setting its title:

PlotlyGrapher().add_points(points, colorbar_title = "Velocity").show()

Histogram of Tracking Errors

The Centroids(error = True) filter appends a column “error” representing the relative error
in the tracked position. You can select a named column via indexing, e.g. trajectories["error"];
you can then plot a histogram of the relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories["cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

Or simply append the `Condition` to the `pept.Pipeline`
pipeline = pept.Pipeline([
 ...
 Condition("cluster_size > 30, error < 20"),
 ...
])

Exporting Plotly Graphs as Images

The standard output of the Plotly grapher is an interactive HTML webpage; however, this can lead to large file sizes or memory overflows. Plotly allows for graphs to be exported as images to alleviate some of these issues.

Ensure you have imported:

import plotly.express as px
import kaleido
import plotly.io as pio

There are two main ways of exporting as images:

Save the inner plotly.Figure attribute of a `grapher`
Format can be changed to other image formats
Width and height can be adjusted to give the desired image size
grapher.fig.write_image("figure.png", width=2560, height=1440)

Modifying the Underlying Figure

You can access the Plotly figure wrapped and managed by a PlotlyGrapher using the .fig
attribute:

grapher.fig.update_layout(xaxis_title = "Pipe Length (mm)")

Initialising PEPT Scanner Data

The pept.scanners submodule contains converters between scanner specific data formats
(e.g. parallel screens / ASCII, modular camera / binary) and the pept base classes,
allowing simple initialisation of pept.LineData from different sources.

ADAC Forte

The parallel screens detector used at Birmingham can output binary list-mode data, which can
be converted using pept.scanners.adac_forte(binary_file):

import pept

lines = pept.scanners.adac_forte("binary_file.da01")

If you have multiple files from the same experiment, e.g. “data.da01”, “data.da02”, etc., you can stitch them all together using a glob, “data.da*”:

import pept

Multiple files starting with `binary_file.da`
lines = pept.scanners.adac_forte("binary_file.da*")

Parallel Screens

If you have your data as a CSV containing 5 columns [t, x1, y1, x2, y2] representing the
coordinates of the two points defining an LoR on two parallel screens, you can use
pept.scanners.parallel_screens to insert the missing coordinates and get the LoRs into
the general LineData format [t, x1, y1, z1, x2, y2, z2]:

import pept

screen_separation = 500
lines = pept.scanners.parallel_screens(csv_or_array, screen_separation)

Modular Camera

Your modular camera data can be initialised using pept.scanners.modular_camera:

import pept

lines = pept.scanners.modular_camera(filepath)

Adaptive Sampling

Perhaps the most important decision a PEPT user must make is how the LoRs are divided into samples. The two most common approaches are:

Fixed sample size: a constant number of elements per sample, with potential overlap between samples.

	Advantages: effectively adapts spatio-temporal resolution, with higher accuracy in more active PEPT scanner regions.

	Disadvantages: when a tracer exits the field of view, the last LoRs will be joined with the first LoRs when the tracer re-enters the scanner in the same samples.

Fixed time window: a constant time interval in which LoRs are aggregated, with potential overlap.

	Advantages: robust to tracers moving out of the field of view.

	Disadvantages: non-adaptive temporal resolution.

The two approaches can be combined into a single pept.AdaptiveWindow, which works as a fixed time window, except when more LoRs are encountered than a given limit, in which case the time window is shrunk - hence adapting the time window depending on how many LoRs are intercepted in a given window.

import pept

A time window of 5 ms shrinking when encountering more than 200 LoRs
lors = pept.LineData(..., sample_size = pept.AdaptiveWindow(5.0, 200))

A time window of 12 ms with the number of LoRs capped at 400 LoRs and an overlap of 6 ms
lors = pept.scanners.adac_forte(
 ...,
 sample_size = pept.AdaptiveWindow(12., 200),
 overlap = pept.AdaptiveWindow(6.),
)

Moreover, if an ideal number of LoRs is selected, there exists an optimum time window for which most samples will have roughly this ideal number of LoRs, except when the tracer is out of the field of view, or it’s static. This can be automatically selected using pept.tracking.OptimizeWindow:

import pept
import pept.tracking as pt

Find an adaptive time window that is ideal for about 200 LoRs per sample
lors = pept.LineData(...)
lors = pt.OptimizeWindow(ideal_elems = 200).fit(lors)

OptimizeWindow can be used at the start of a pipeline; an optional overlap parameter can be used to define an overlap as a ratio to the ideal time window found. For example, if the ideal time window found is 100 ms, an overlap of 0.5 will result in an overlapping time interval of 50 ms:

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
 OptimizeWindow(200),
 BirminghamMethod(fopt = 0.5),
 Stack(),
])

locations = pipeline.fit(lors)

The Birmingham Method

The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.

If you are using it in your research, you are kindly asked to cite the following paper:

Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron emission particle tracking-a technique for studying flow within engineering equipment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1993 Mar 10;326(3):592-607.

Birmingham Method recipe

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
 BirminghamMethod(fopt = 0.5),
 Stack(),
])

locations = pipeline.fit(lors)

Recipe with Trajectory Separation

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
 BirminghamMethod(fopt = 0.5),
 Segregate(window = 20, cut_distance = 10),
 Stack(),
])

locations = pipeline.fit(lors)

PEPT-ML

PEPT using Machine Learning is a modern clustering-based tracking method that was developed specifically for noisy, fast applications.

If you are using PEPT-ML in your research, you are kindly asked to cite the following paper:

Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of Scientific Instruments. 2020 Jan 1;91(1):013329.

PEPT-ML one pass of clustering recipe

The LoRs are first converted into Cutpoints, which are then assigned cluster labels using HDBSCAN; the cutpoints are then grouped into clusters using SplitLabels and the clusters’ Centroids are taken as the particle locations. Finally, stack all centroids into a single PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
 Cutpoints(max_distance = 0.5),
 HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
 SplitLabels() + Centroids(error = True),
 Stack(),
])

locations = pipeline.fit(lors)

PEPT-ML second pass of clustering recipe

The particle locations will always have a bit of scatter to them; we can tighten those points into accurate, dense trajectories using a second pass of clustering.

Set a very small sample size and maximum overlap to minimise temporal smoothing effects, then recluster the tracer locations, split according to cluster label, compute centroids, and stack into a final PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
 Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
 HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
 SplitLabels() + Centroids(error = True),
 Stack(),
])

locations2 = pipeline.fit(lors)

PEPT-ML complete recipe

Including two passes of clustering and trajectory separation:
Including an example ADAC Forte data initisalisation, two passes of clustering,
trajectory separation, plotting and saving trajectories as CSV.

Import what we need from the `pept` library
import pept
from pept.tracking import *
from pept.plots import PlotlyGrapher, PlotlyGrapher2D

Open interactive plots in the web browser
import plotly
plotly.io.renderers.default = "browser"

Initialise data from file and set sample size and overlap
filepath = "DS1.da01"
max_tracers = 1

lors = pept.scanners.adac_forte(
 filepath,
 sample_size = 200 * max_tracers,
 overlap = 150 * max_tracers,
)

Select only the first 1000 samples of LoRs for testing; comment out for all
lors = lors[:1000]

Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

 # First pass of clustering
 Cutpoints(max_distance = 0.2),
 HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
 SplitLabels() + Centroids(error = True),

 # Second pass of clustering
 Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
 HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
 SplitLabels() + Centroids(),

 # Trajectory separation
 Segregate(window = 20 * max_tracers, cut_distance = 10),
 Stack(),
])

Process all samples in `lors` in parallel, using `max_workers` threads
trajectories = pipeline.fit(lors)

Save trajectories as CSV
trajectories.to_csv(filepath + ".csv")

Save as a fast binary; you can load them back with `pept.load("path")`
trajectories.save(filepath + ".pickle")

Plot trajectories - first a 2D timeseries, then all 3D positions
PlotlyGrapher2D().add_timeseries(trajectories).show()
PlotlyGrapher().add_points(trajectories).show()

Example of a Complex Processing Pipeline

This is an example of “production code” used for tracking tracers in pipe flow
imaging, where particles enter and leave the field of view regularly. This
pipeline automatically:

	Sets an optimum adaptive time window.

	Runs a first pass of clustering, keeping track of the number of LoRs around
the tracers (cluster_size) and relative location error (error).

	Removes locations with too few LoRs or large errors.

	Sets a new optimum adaptive time window for a second pass of clustering.

	Removes spurious points while the tracer is out of the field of view.

	Separates out different tracer trajectories, removes the ones with too few
points and groups them by trajectory.

	Computes the tracer velocity at each location on each trajectory.

	Removes locations at the edges of the detectors.

Each individual step could be an entire program on its own; with the PEPT
Pipeline architecture, they can be chained in 17 lines of Python code,
automatically using all processors available on parallelisable sections.

Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([
 OptimizeWindow(200, overlap = 0.5) + Debug(1),

 # First pass of clustering
 Cutpoints(max_distance = 0.2),
 HDBSCAN(true_fraction = 0.15),
 SplitLabels() + Centroids(cluster_size = True, error = True),

 # Remove erroneous points
 Condition("cluster_size > 30, error < 20"),

 # Second pass of clustering
 OptimizeWindow(30, overlap = 0.95) + Debug(1),
 HDBSCAN(true_fraction = 0.6),
 SplitLabels() + Centroids(),

 # Remove sparse points in time
 OutOfViewFilter(200.),

 # Trajectory separation
 Segregate(window = 20, cut_distance = 20, min_trajectory_size = 20),
 Condition("label >= 0"),
 GroupBy("label"),

 # Velocity computation
 Velocity(11),
 Velocity(11, absolute = True),

 # Cutoff points outside this region
 Condition("y > 100, y < 500"),

 Stack(),
])

Feature Point Identification

FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers in fast and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe flows at the Virginia Commonwealth University. If you use this algorithm in your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle tracking with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017 Jan 21; 843:22-8.

FPI Recipe

As FPI works on voxelized representations of the LoRs, the Voxelize filter is first used before FPI itself:

import pept
from pept.tracking import *

resolution = (100, 100, 100)

pipeline = pept.Pipeline([
 Voxelize(resolution),
 FPI(w = 3, r = 0.4),
 Stack(),
])

locations = pipeline.fit(lors)

Tracking Errors

When processing more difficult datasets - scattering environments, low tracer activities, etc. -
it is often useful to use some tracer statistics to remove erroneous locations.

Most PEPT algorithms will include some measure of the tracer location errors, for example:

	The Centroids(error = True) filter appends a column “error” representing the standard
deviation of the distances from the computed centroid to the constituent points. For a
500 mm scanner, a spread in a tracer location of 100 mm is clearly an erroneous point.

	The Centroids(cluster_size = True) filter appends a column “cluster_size” representing
the number of points used to compute the centroid. If a sample of 200 LoRs yields a tracer
location computed from 5 points, it is clearly noise.

	The BirminghamMethod filter includes a column “error” representing the standard
deviation of the distances from the tracer position to the constituent LoRs.

Histogram of Tracking Errors

You can select a named column via string indexing, e.g. trajectories["error"]; you can
then plot a histogram of the relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories["cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

Or simply append the `Condition` to the `pept.Pipeline`
pipeline = pept.Pipeline([
 ...
 Condition("cluster_size > 30, error < 20"),
 ...
])

Trajectory Separation

Segregate Points

We can separate out trajectory segments / points that are spatio-temporally far away to:

	Remove spurious, noisy points.

	Separate out continuous trajectory segments.

The spatio-temporal metric differentiates between points that may be in the same location at different times. This is achieved by allowing points to be connected in a sliding window approach.

The pept.tracking.Segregate algorithm works by creating a Minimum Spanning Tree (MST, or minimum distance path) connecting all points in a dataset, then cutting all paths longer than a cut_distance. All distinct segments are assigned a trajectory 'label' (integer starting from 0); trajectories with fewer than min_trajectory_size points are considered noise (label -1).

from pept.tracking import *

trajectories = Segregate(window = 20, cut_distance = 10.).fit(trajectories)

Consider all trajectories with fewer than 50 points to be noise:

segr = Segregate(
 window = 20,
 cut_distance = 10.,
 min_trajectory_size = 50,
)

trajectories = segr.fit(trajectories)

This step adds a new column “label”. We can group each individual trajectory into a list with GroupBy:

traj_list = GroupBy("label").fit(trajectories)
traj_list[0] # First trajectory

[New in pept-0.5.2] Only connect points within a time interval; in other words, disconnect into different trajectories points whose timestamps are further apart than max_time_interval:

 segr = Segregate(
 window = 20,
 cut_distance = 10.,
 min_trajectory_size = 50,
 max_time_interval = 2000, # Disconnect tracer with >2s gap
)

trajectories = segr.fit(trajectories)

Filtering Data

There are many filters in pept.tracking, you can check out the Manual at the top of the page for a complete list. Here are examples with the most important ones.

Remove

Simply remove a column:

from pept.tracking import *

trajectories = Remove("label").fit(trajectories)

Or multiple columns:

trajectories = Remove("label", "error").fit(trajectories)

Condition

One of the most important filters, selecting only data that satisfies a condition:

from pept.tracking import *

trajectories = Condition("error < 15").fit(trajectories)

Or multiple ones:

trajectories = Condition("error < 15, label >= 0").fit(trajectories)

In the simplest case, you just use the column name as the first argument followed by a comparison. If the column name is not the first argument, you must use single quotes:

trajectories = Condition("0 <= 'label'").fit(trajectories)

You can also use filtering functions from NumPy in the condition string (i.e. anything returning a boolean mask):

Remove all NaNs and Infs from the 'x' column
trajectories = Condition("np.isfinite('x')")

Finally, you can supply your own function receiving a NumPy array of the data and returning a boolean mask:

def last_column_filter(data):
 return data[:, -1] > 10

trajectories = Condition(last_column_filter).fit(trajectories)

Or using inline functions (i.e. lambda):

Select points within a vertical cylinder with radius 10
trajectories = Condition(lambda x: x[:, 1]**2 + x[:, 3]**2 < 10**2).fit(trajectories)

SamplesCondition

While Condition is applied on individual points, we could filter entire samples - for example, select only trajectories with more than 30 points:

import pept.tracking as pt

long_trajectories_filter = pept.Pipeline([
 # Segregate points - appends "label" column
 pt.Segregate(window = 20, cut_distance = 10),

 # Group points into samples; e.g. sample 1 contains all points with label 1
 pt.GroupBy("label"),

 # Now each sample is an entire trajectory which we can filter
 pt.SamplesCondition("sample_size > 30"),

 # And stack all remaining samples back into a single PointData
 pt.Stack(),
])

long_trajectories = long_trajectories_filter.fit(trajectories)

The condition can be based on the sample itself, e.g. keep only samples that lie completely beyond x=0:

Keep only samples for which all points' X coordinates are bigger than 0
Condition("np.all(sample['x'] > 0)")

GroupBy

Stack all samples (i.e. LineData or PointData) and split them into a list according to a named / numeric column index:

from pept.tracking import *

group_list = GroupBy("label").fit(trajectories)

RemoveStatic

Remove tracer locations when it spends more than time_window without moving more than max_distance:

from pept.tracking import *

Remove positions that spent more than 2 seconds without moving more than 20 mm
nonstatic = RemoveStatic(time_window = 2000, max_distance = 20).fit(trajectories)

Extracting Velocities

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label, then Interpolate into regular timesteps, then compute each point’s Velocity (dimension-wise or absolute) and finally Stack them back into a PointData:

from pept.tracking import *

pipe_vel = pept.Pipeline([
 Segregate(window = 20, cut_distance = 10.),
 GroupBy("label"),
 Interpolate(timestep = 5.),
 Velocity(window = 7),
 Stack(),
])

trajectories = pipe_vel.fit(trajectories)

The Velocity step appends columns ["vx", "vy", "vz"] (default) or ["v"] (if absolute = True). You can add both if you wish:

from pept.tracking import *

pept.Pipeline([
 Segregate(window = 20, cut_distance = 10.),
 GroupBy("label"),
 Interpolate(timestep = 5.),
 Velocity(window = 7), # Appends vx, vy, vz
 Velocity(window = 7, absolute = True), # Appends v
 Stack(),
])

Interpolating Timesteps

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label, then Interpolate into regular timesteps and finally Stack them back into a PointData:

from pept.tracking import *

pipe = pept.Pipeline([
 Segregate(window = 20, cut_distance = 10.),
 GroupBy("label"),
 Interpolate(timestep = 5.),
 Stack(),
])

trajectories = pipe.fit(trajectories)

Manual

All public pept subroutines are fully documented here, along with copy-pastable examples. The base functionality is summarised below; the rest of the library is organised into submodules, which you can access on the left. You can also use the Search bar in the top left to go directly to what you need.

We really appreciate all help with writing useful documentation; if you feel something can be improved, or would like to share some example code, by all means get in contact with us - or be a superhero and click Edit this page on the right and submit your changes to the GitHub repository directly!

Base Functions

	pept.read_csv(filepath_or_buffer[, ...])

	Read a given number of lines from a file and return a numpy array of the values.

	pept.load(filepath)

	Load a binary saved / pickled object from filepath.

	pept.save(filepath, obj)

	Save an object obj instance as a binary file at filepath.

Base Classes

	pept.LineData(lines[, sample_size, overlap, ...])

	A class for PEPT LoR data iteration, manipulation and visualisation.

	pept.PointData(points[, sample_size, ...])

	A class for general PEPT point-like data iteration, manipulation and visualisation.

	pept.Pixels(pixels_array, xlim, ylim, **kwargs)

	A class managing a 2D pixel space with physical dimensions, including tools for pixel manipulation and visualisation.

	pept.Voxels(voxels_array, xlim, ylim, zlim, ...)

	A class managing a 3D voxel space with physical dimensions, including tools for voxel manipulation and visualisation.

	pept.Pipeline(transformers)

	A PEPT processing pipeline, chaining multiple Filter and Reducer for efficient, parallel execution.

Auxilliaries

	pept.TimeWindow(window)

	Define a sample_size as a fixed time window / slice.

	pept.AdaptiveWindow(window[, max_elems])

	Define a sample_size as a time window with a maximum limit of elements.

pept.read_csv

	
pept.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

	Read a given number of lines from a file and return a numpy array of the
values.

This is a convenience function that’s simply a proxy to pandas.read_csv,
configured with default parameters for fast reading and parsing of usual
PEPT data.

Most importantly, it reads from a space-separated values file at
filepath_or_buffer, optionally skipping skiprows lines and reading in
nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing.
The descriptions below are taken from the pandas documentation.

	Parameters

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv. If
you want to pass in a path object, pandas accepts any os.PathLike. By
file-like object, we refer to objects with a read() method, such as a
file handler (e.g. via builtin open function) or StringIO.

	skiprowslist-like, int [https://docs.python.org/3/library/functions.html#int] or callable() [https://docs.python.org/3/library/functions.html#callable], optional
	Line numbers to skip (0-indexed) or number of lines to skip (int) at
the start of the file.

	nrowsint [https://docs.python.org/3/library/functions.html#int], optional
	Number of rows of file to read. Useful for reading pieces of large
files.

	dtypeType name, default float
	Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32,
‘c’: ‘Int64’}.

	sepstr [https://docs.python.org/3/library/stdtypes.html#str], default “s+”
	Delimiter to use. Separators longer than 1 character and different from
‘s+’ will be interpreted as regular expressions and will also force
the use of the Python parsing engine.

	headerint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int], “infer”, optional
	Row number(s) to use as the column names, and the start of the data. By
default assume there is no header present (i.e. header = None).

	engine{‘c’, ‘python’}, default “c”
	Parser engine to use. The C engine is faster while the python engine is
currently more feature-complete.

	na_filterbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True
	Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can
improve the performance of reading a large file.

	quotingint [https://docs.python.org/3/library/functions.html#int] or csv.QUOTE_* instance, default csv.QUOTE_NONE
	Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

	memory_mapbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using
this option can improve performance because there is no longer any I/O
overhead.

	**kwargsoptional
	Extra keyword arguments that will be passed to pandas.read_csv.

pept.load

	
pept.load(filepath)

	Load a binary saved / pickled object from filepath.

Most often the full object state was saved using the pept.save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	object [https://docs.python.org/3/library/functions.html#object]
	The loaded Python object instance (e.g. pept.LineData).

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

pept.save

	
pept.save(filepath, obj)

	Save an object obj instance as a binary file at filepath.

Saves the full object state, including e.g. the inner .lines NumPy array,
sample_size, etc. in a fast, portable binary format. Load back the object
using the pept.load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	objobject [https://docs.python.org/3/library/functions.html#object]
	Any - tipically PEPT-oriented - object to be saved in the binary
pickle format.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

pept.LineData

	
class pept.LineData(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'], **kwargs)

	Bases: IterableSamples

A class for PEPT LoR data iteration, manipulation and visualisation.

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each
defined by two points, regardless of the geometry of the scanner used. This
class is used for the encapsulation of LoRs (or any lines!), efficiently
yielding samples of lines of an adaptive sample_size and overlap.

It is an abstraction over PET / PEPT scanner geometries and data formats,
as once the raw LoRs (be they stored as binary, ASCII, etc.) are
transformed into the common LineData format, any tracking, analysis or
visualisation algorithm in the pept package can be used interchangeably.
Moreover, it provides a stable, user-friendly interface for iterating over
LoRs in samples - this is useful for tracking algorithms, as they
generally take a few LoRs (a sample), produce a tracer position, then
move to the next sample of LoRs, repeating the procedure. Using overlapping
samples is also useful for improving the tracking rate of the algorithms.

This is the base class for LoR data; the subroutines for transforming other
data formats into LineData can be found in pept.scanners. If you’d like
to integrate another scanner geometry or raw data format into this package,
you can check out the pept.scanners.parallel_screens module as an
example. This usually only involves writing a single function by hand; then
all attributes and methods from LineData will be available to your new
data format. If you’d like to use LineData as the base for other
algorithms, you can check out the pept.tracking.peptml.cutpoints module
as an example; the Cutpoints class iterates the samples of LoRs in any
LineData in parallel, using concurrent.futures.ThreadPoolExecutor.

See also

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

	pept.tracking.Cutpoints
	Compute cutpoints from pept.LineData.

Notes

The class saves lines as a C-contiguous numpy array for efficient
access in C / Cython functions. The inner data can be mutated, but do not
change the number of rows or columns after instantiating the class.

Examples

Initialise a LineData instance containing 10 lines with a sample_size
of 3.

>>> import pept
>>> import numpy as np
>>> lines_raw = np.arange(70).reshape(10, 7)
>>> print(lines_raw)
[[0 1 2 3 4 5 6]
 [7 8 9 10 11 12 13]
 [14 15 16 17 18 19 20]
 [21 22 23 24 25 26 27]
 [28 29 30 31 32 33 34]
 [35 36 37 38 39 40 41]
 [42 43 44 45 46 47 48]
 [49 50 51 52 53 54 55]
 [56 57 58 59 60 61 62]
 [63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data
pept.LineData (samples: 3)

sample_size = 3
overlap = 0
lines =
 (rows: 10, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 ...
 [56. 57. ... 61. 62.]
 [63. 64. ... 68. 69.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Access samples using subscript notation. Notice how the samples are
consecutive, as overlap is 0 by default.

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 [14. 15. ... 19. 20.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[21. 22. ... 26. 27.]
 [28. 29. ... 33. 34.]
 [35. 36. ... 40. 41.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

Notice how rows are repeated from one sample to the next when accessing
them, because overlap is now 2:

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 [14. 15. ... 19. 20.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
 (rows: 3, columns: 7)
 [[7. 8. ... 12. 13.]
 [14. 15. ... 19. 20.]
 [21. 22. ... 26. 27.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now change sample_size to 5 and notice again how the number of samples
changes:

>>> len(line_data)
8

>>> line_data.sample_size = 5
>>> len(line_data)
2

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 5
overlap = 0
lines =
 (rows: 5, columns: 7)
 [[0. 1. ... 5. 6.]
 [7. 8. ... 12. 13.]
 ...
 [21. 22. ... 26. 27.]
 [28. 29. ... 33. 34.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 5
overlap = 0
lines =
 (rows: 5, columns: 7)
 [[21. 22. ... 26. 27.]
 [28. 29. ... 33. 34.]
 ...
 [42. 43. ... 47. 48.]
 [49. 50. ... 54. 55.]]
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Notice how the samples do not cover the whole input lines_raw array, as
the last lines are omitted - think of the sample_size and overlap. They
are still inside the inner lines attribute of line_data though:

>>> line_data.lines
array([[0., 1., 2., 3., 4., 5., 6.],
 [7., 8., 9., 10., 11., 12., 13.],
 [14., 15., 16., 17., 18., 19., 20.],
 [21., 22., 23., 24., 25., 26., 27.],
 [28., 29., 30., 31., 32., 33., 34.],
 [35., 36., 37., 38., 39., 40., 41.],
 [42., 43., 44., 45., 46., 47., 48.],
 [49., 50., 51., 52., 53., 54., 55.],
 [56., 57., 58., 59., 60., 61., 62.],
 [63., 64., 65., 66., 67., 68., 69.]])

	Attributes

	
	lines(N, M>=7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An (N, M>=7) numpy array that stores the PEPT LoRs as time and
cartesian (3D) coordinates of two points defining a line, followed by
any additional data. The data columns are then
[time, x1, y1, z1, x2, y2, z2, etc.].

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], pept.TimeWindow or None [https://docs.python.org/3/library/constants.html#None]
	Defining the number of LoRs in a sample; if it is an integer, a
constant number of LoRs are returned per sample. If it is a list of
integers, sample i will have length sample_size[i]. If it is a
pept.TimeWindow instance, each sample will span a fixed time window.
If None, custom sample sizes are returned as per the
samples_indices attribute.

	overlapint [https://docs.python.org/3/library/functions.html#int], pept.TimeWindow or None [https://docs.python.org/3/library/constants.html#None]
	Defining the overlapping LoRs between consecutive samples. If int,
constant numbers of LoRs are used. If pept.TimeWindow, the overlap
will be a constant time window across the data timestamps (first
column). If None, custom sample sizes are defined as per the
samples_indices attribute.

	samples_indices(S, 2) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 2D NumPy array of integers, where row i defines the i-th sample’s
start and end row indices, i.e.
sample[i] == data[samples_indices[i, 0]:samples_indices[i, 1]]. The
sample_size and overlap are simply friendly interfaces to setting
the samples_indices.

	columns(M,) list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]
	A list of strings with the same number of columns as lines containing
each column’s name.

	attrsdict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]
	A dictionary of other attributes saved on this class. Attribute names
starting with an underscore are considered “hidden”.

	
__init__(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'], **kwargs)

	LineData class constructor.

	Parameters

	
	lines(N, M>=7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An (N, M>=7) numpy array that stores the PEPT LoRs (or any generic
set of lines) as time and cartesian (3D) coordinates of two points
defining each line, followed by any additional data. The data
columns are then [time, x1, y1, z1, x2, y2, z2, etc.].

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the
data as one single sample.

	overlapint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the overlap between two consecutive samples
that are returned when iterating over lines. An overlap of 0
means consecutive samples, while an overlap of (sample_size - 1)
means incrementing the samples by one. A negative overlap means
skipping values between samples. An error is raised if overlap is
larger than or equal to sample_size.

	columnsList[str [https://docs.python.org/3/library/stdtypes.html#str]], default [“t”, “x1”, “y1”, “z1”, “x2”, “y2”, “z2”]
	A list of strings corresponding to the column labels in points.

	**kwargsextra keyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Any extra attributes to set in .attrs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If lines has fewer than 7 columns.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size unless sample_size is 0. Overlap
has to be smaller than sample_size. Note that it can also be
negative.

Methods

	__init__(lines[, sample_size, overlap, columns])

	LineData class constructor.

	copy([deep, data, extra, hidden])

	Construct a similar object, optionally with different data.

	extra_attrs()

	

	hidden_attrs()

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	plot([sample_indices, ax, alt_axes, ...])

	Plot lines from selected samples using matplotlib.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	to_csv(filepath[, delimiter])

	Write lines to a CSV file.

Attributes

	attrs

	

	columns

	

	data

	

	lines

	

	overlap

	

	sample_size

	

	samples_indices

	

	
property lines

	

	
to_csv(filepath, delimiter=' ')

	Write lines to a CSV file.

Write all LoRs stored in the class to a CSV file.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	delimiterstr [https://docs.python.org/3/library/stdtypes.html#str], default ” “
	The delimiter used to separate the values in the CSV file.

	
plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=0)

	Plot lines from selected samples using matplotlib.

Returns matplotlib figure and axes objects containing all lines
included in the samples selected by sample_indices.
sample_indices may be a single sample index (e.g. 0), an iterable
of indices (e.g. [1,5,6]), or an Ellipsis (…) for all samples.

	Parameters

	
	sample_indicesint [https://docs.python.org/3/library/functions.html#int] or iterable [https://docs.python.org/3/glossary.html#term-iterable] or Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis], default Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]
	The index or indices of the samples of lines. An int signifies
the sample index, an iterable (list-like) signifies multiple sample
indices, while an Ellipsis (…) signifies all samples. The
default is … (all lines).

	axmpl_toolkits.mplot3D.Axes3D object [https://docs.python.org/3/library/functions.html#object], optional
	The 3D matplotlib-based axis for plotting. If undefined, new
Matplotlib figure and axis objects are created.

	alt_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If True, plot using the alternative PEPT-style axes convention:
z is horizontal, y points upwards. Because Matplotlib cannot swap
axes, this is achieved by swapping the parameters in the plotting
call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default -1
	The column in the data samples that will be used to color the
lines. The default is -1 (the last column).

	Returns

	
	fig, axmatplotlib figure and axes objects
	

Notes

Plotting all lines is very computationally-expensive for matplotlib. It
is recommended to only plot a couple of samples at a time, or use the
faster pept.plots.PlotlyGrapher.

Examples

Plot the lines from sample 1 in a LineData instance:

>>> lors = pept.LineData(...)
>>> fig, ax = lors.plot(1)
>>> fig.show()

Plot the lines from samples 0, 1 and 2:

>>> fig, ax = lors.plot([0, 1, 2])
>>> fig.show()

	
property attrs

	

	
property columns

	

	
copy(deep=True, data=None, extra=True, hidden=True, **attrs)

	Construct a similar object, optionally with different data. If
extra, extra attributes are propagated; same for hidden.

	
property data

	

	
extra_attrs()

	

	
hidden_attrs()

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property overlap

	

	
property sample_size

	

	
property samples_indices

	

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.PointData

	
class pept.PointData(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)

	Bases: IterableSamples

A class for general PEPT point-like data iteration, manipulation and
visualisation.

In the context of positron-based particle tracking, points are defined by a
timestamp, 3D coordinates and any other extra information (such as
trajectory label or some tracer signature). This class is used for the
encapsulation of 3D points - be they tracer locations, cutpoints, etc. -,
efficiently yielding samples of points of an adaptive sample_size and
overlap.

Much like a complement to LineData, PointData is an abstraction over
point-like data that may be encountered in the context of PEPT (e.g.
pre-tracked tracer locations), as once the raw points are transformed into
the common PointData format, any tracking, analysis or visualisation
algorithm in the pept package can be used interchangeably. Moreover, it
provides a stable, user-friendly interface for iterating over points in
samples - this can be useful for tracking algorithms, as some take a few
points (a sample), produce an accurate tracer location, then move to the
next sample of points, repeating the procedure. Using overlapping samples
is also useful for improving the time resolution of the algorithms.

This is the base class for point-like data; subroutines that accept and/or
return PointData instances (or subclasses thereof) can be found
throughout the pept package. If you’d like to create new algorithms based
on them, you can check out the pept.tracking.peptml.cutpoints module as
an example; the Cutpoints class receives a LineData instance,
transforms the samples of LoRs into cutpoints, then initialises itself as a
PointData subclass - thereby inheriting all its methods and attributes.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size. Overlap is required to be smaller than
sample_size, unless sample_size is 0. Note that it can also be
negative.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

	pept.plots.PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

	pept.tracking.Cutpoints
	Compute cutpoints from pept.LineData.

Notes

This class saves points as a C-contiguous numpy array for efficient
access in C / Cython functions. The inner data can be mutated, but do not
change the number of rows or columns after instantiating the class.

Examples

Initialise a PointData instance containing 10 points with a sample_size
of 3.

>>> import numpy as np
>>> import pept
>>> points_raw = np.arange(40).reshape(10, 4)
>>> print(points_raw)
[[0 1 2 3]
 [4 5 6 7]
 [8 9 10 11]
 [12 13 14 15]
 [16 17 18 19]
 [20 21 22 23]
 [24 25 26 27]
 [28 29 30 31]
 [32 33 34 35]
 [36 37 38 39]]

>>> point_data = pept.PointData(points_raw, sample_size = 3)
>>> point_data
pept.PointData (samples: 3)

sample_size = 3
overlap = 0
points =
 (rows: 10, columns: 4)
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 ...
 [32. 33. 34. 35.]
 [36. 37. 38. 39.]]
columns = ['t', 'x', 'y', 'z']
attrs = {}

Access samples using subscript notation. Notice how the samples are
consecutive, as overlap is 0 by default.

>>> point_data[0]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
 (rows: 3, columns: 4)
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [8. 9. 10. 11.]]
columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
 (rows: 3, columns: 4)
 [[12. 13. 14. 15.]
 [16. 17. 18. 19.]
 [20. 21. 22. 23.]]
columns = ['t', 'x', 'y', 'z']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(point_data) # Number of samples
3

>>> point_data.overlap = 2
>>> len(point_data)
8

Notice how rows are repeated from one sample to the next when accessing
them, because overlap is now 2:

>>> point_data[0]
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.]])

>>> point_data[1]
array([[4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.]])

Now change sample_size to 5 and notice again how the number of samples
changes:

>>> len(point_data)
8

>>> point_data.sample_size = 5
>>> len(point_data)
2

>>> point_data[0]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
 (rows: 3, columns: 4)
 [[0. 1. 2. 3.]
 [4. 5. 6. 7.]
 [8. 9. 10. 11.]]
columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
 (rows: 3, columns: 4)
 [[4. 5. 6. 7.]
 [8. 9. 10. 11.]
 [12. 13. 14. 15.]]
columns = ['t', 'x', 'y', 'z']
attrs = {}

Notice how the samples do not cover the whole input points_raw array, as
the last lines are omitted - think of the sample_size and overlap. They
are still inside the inner points attribute of point_data though:

>>> point_data.points
array([[0., 1., 2., 3.],
 [4., 5., 6., 7.],
 [8., 9., 10., 11.],
 [12., 13., 14., 15.],
 [16., 17., 18., 19.],
 [20., 21., 22., 23.],
 [24., 25., 26., 27.],
 [28., 29., 30., 31.],
 [32., 33., 34., 35.],
 [36., 37., 38., 39.]])

	Attributes

	
	points(N, M) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An (N, M >= 4) numpy array that stores the points as time, followed by
cartesian (3D) coordinates of the point, followed by any extra
information. The data columns are then [time, x, y, z, etc].

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], pept.TimeWindow or None [https://docs.python.org/3/library/constants.html#None]
	Defining the number of points in a sample; if it is an integer, a
constant number of points are returned per sample. If it is a list of
integers, sample i will have length sample_size[i]. If it is a
pept.TimeWindow instance, each sample will span a fixed time window.
If None, custom sample sizes are returned as per the
samples_indices attribute.

	overlapint [https://docs.python.org/3/library/functions.html#int], pept.TimeWindow or None [https://docs.python.org/3/library/constants.html#None]
	Defining the overlapping points between consecutive samples. If int,
constant numbers of points are used. If pept.TimeWindow, the overlap
will be a constant time window across the data timestamps (first
column). If None, custom sample sizes are defined as per the
samples_indices attribute.

	samples_indices(S, 2) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 2D NumPy array of integers, where row i defines the i-th sample’s
start and end row indices, i.e.
sample[i] == data[samples_indices[i, 0]:samples_indices[i, 1]]. The
sample_size and overlap are simply friendly interfaces to setting
the samples_indices.

	columns(M,) list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]
	A list of strings with the same number of columns as points
containing each column’s name.

	attrsdict [https://docs.python.org/3/library/stdtypes.html#dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any]
	A dictionary of other attributes saved on this class. Attribute names
starting with an underscore are considered “hidden”.

	
__init__(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)

	PointData class constructor.

	Parameters

	
	points(N, M) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An (N, M >= 4) numpy array that stores points (or any generic 2D
set of data). It expects that the first column is time, followed by
cartesian (3D) coordinates of points, followed by any extra
information the user needs. The data columns are then
[time, x, y, z, etc].

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], default 0
	An int` that defines the number of points that should be returned
when iterating over points. A sample_size of 0 yields all the
data as one single sample.

	overlapint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the overlap between two consecutive samples
that are returned when iterating over points. An overlap of 0
means consecutive samples, while an overlap of (sample_size - 1)
implies incrementing the samples by one. A negative overlap means
skipping values between samples. An error is raised if overlap is
larger than or equal to sample_size.

	columnsList[str [https://docs.python.org/3/library/stdtypes.html#str]], default [“t”, “x”, “y”, “z”]
	A list of strings corresponding to the column labels in points.

	**kwargsextra keyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Any extra attributes to set on the class instance.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If line_data does not have (N, M) shape, where M >= 4.

Methods

	__init__(points[, sample_size, overlap, columns])

	PointData class constructor.

	copy([deep, data, extra, hidden])

	Construct a similar object, optionally with different data.

	extra_attrs()

	

	hidden_attrs()

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	plot([sample_indices, ax, alt_axes, ...])

	Plot points from selected samples using matplotlib.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	to_csv(filepath[, delimiter])

	Write the inner points to a CSV file.

Attributes

	attrs

	

	columns

	

	data

	

	overlap

	

	points

	

	sample_size

	

	samples_indices

	

	
property points

	

	
to_csv(filepath, delimiter=' ')

	Write the inner points to a CSV file.

Write all points stored in the class to a CSV file.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	delimiterstr [https://docs.python.org/3/library/stdtypes.html#str], default ” “
	The delimiter used to separate the values in the CSV file.

	
plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=-1)

	Plot points from selected samples using matplotlib.

Returns matplotlib figure and axes objects containing all points
included in the samples selected by sample_indices.
sample_indices may be a single sample index (e.g. 0), an iterable
of indices (e.g. [1,5,6]), or an Ellipsis (…) for all samples.

	Parameters

	
	sample_indicesint [https://docs.python.org/3/library/functions.html#int] or iterable [https://docs.python.org/3/glossary.html#term-iterable] or Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis], default Ellipsis [https://docs.python.org/3/library/constants.html#Ellipsis]
	The index or indices of the samples of points. An int signifies
the sample index, an iterable (list-like) signifies multiple sample
indices, while an Ellipsis (…) signifies all samples. The
default is … (all points).

	axmpl_toolkits.mplot3D.Axes3D object [https://docs.python.org/3/library/functions.html#object], optional
	The 3D matplotlib-based axis for plotting. If undefined, new
Matplotlib figure and axis objects are created.

	alt_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If True, plot using the alternative PEPT-style axes convention:
z is horizontal, y points upwards. Because Matplotlib cannot swap
axes, this is achieved by swapping the parameters in the plotting
call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default -1
	The column in the data samples that will be used to color the
points. The default is -1 (the last column).

	Returns

	
	fig, axmatplotlib figure and axes objects
	

Notes

Plotting all points is very computationally-expensive for matplotlib.
It is recommended to only plot a couple of samples at a time, or use
the faster pept.plots.PlotlyGrapher.

Examples

Plot the points from sample 1 in a PointData instance:

>>> point_data = pept.PointData(...)
>>> fig, ax = point_data.plot(1)
>>> fig.show()

Plot the points from samples 0, 1 and 2:

>>> fig, ax = point_data.plot([0, 1, 2])
>>> fig.show()

	
property attrs

	

	
property columns

	

	
copy(deep=True, data=None, extra=True, hidden=True, **attrs)

	Construct a similar object, optionally with different data. If
extra, extra attributes are propagated; same for hidden.

	
property data

	

	
extra_attrs()

	

	
hidden_attrs()

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property overlap

	

	
property sample_size

	

	
property samples_indices

	

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.Pixels

	
class pept.Pixels(pixels_array, xlim, ylim, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class managing a 2D pixel space with physical dimensions, including
tools for pixel manipulation and visualisation.

The .pixels attribute is simply a numpy.ndarray[ndim=2, dtype=float64].
If you think of Pixels as an image, the origin is the top left corner,
the X-dimension is the left edge and the Y-dimension is the top edge, so
that it can be indexed as .pixels[ix, iy].

The .attrs dictionary can be used to store extra information.

See also

	konigcell.Voxels
	A class managing a physical 3D voxel space.

	konigcell.dynamic2d
	Rasterize moving particles’ trajectories.

	konigcell.static2d
	Rasterize static particles’ positions.

	konigcell.dynamic_prob2d
	2D probability distribution of a quantity.

Notes

The class saves pixels as a contiguous numpy array for efficient
access in C / Cython functions. The inner data can be mutated, but do not
change the shape of the array after instantiating the class.

Examples

Create a zeroed 4x4 Pixels grid:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((4, 4), xlim = [0, 10], ylim = [0, 5])
>>> pixels
Pixels

xlim = [0. 10.]
ylim = [0. 5.]
pixels =
 (shape: (4, 4))
 [[0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
attrs = {}

Or create a Pixels instance from another array (e.g. an image or matrix):

>>> import numpy as np
>>> matrix = np.ones((3, 3))
>>> pixels = kc.Pixels(matrix, xlim = [0, 10], ylim = [-5, 5])
>>> pixels
Pixels

xlim = [0. 10.]
ylim = [-5. 5.]
pixels =
 (shape: (3, 3))
 [[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]
attrs = {}

Access pixels’ properties directly:

>>> pixels.xlim # ndarray[xmin, xmax]
>>> pixels.ylim # ndarray[ymin, ymax]
>>> pixels.pixel_size # ndarray[xsize, ysize]
>>> pixels.pixels.shape # pixels resolution - tuple[nx, ny]

You can save extra attributes about the pixels instance in the attrs
dictionary:

>>> pixels.attrs["dpi"] = 300
>>> pixels
Pixels

xlim = [0. 10.]
ylim = [-5. 5.]
pixels =
 (shape: (3, 3))
 [[1. 1. 1.]
 [1. 1. 1.]
 [1. 1. 1.]]
attrs = {
 'dpi': 300
}

The lower left and upper right corners of the pixel grid, in physical
coordinates (the ones given by xlim and ylim):

>>> pixels.lower
array([0., -5.])

>>> pixels.upper
array([10., 5.])

You can access the underlying NumPy array directly:

>>> pixels.pixels
array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

Indexing is forwarded to the NumPy array:

>>> pixels[:, :]
array([[1., 1., 1.],
 [1., 1., 1.],
 [1., 1., 1.]])

Transform physical units into pixel indices:

>>> pixels.from_physical([5, 0]) # pixel centres
array([1., 1.])

>>> pixels.from_physical([5, 0], corner = True) # lower left corners
array([1.5, 1.5])

Transform pixel indices into physical units:

>>> pixels.to_physical([0, 0]) # pixels centres
array([1.66666667, -3.33333333])

>>> pixels.to_physical([0, 0], corner = True) # lower left corners
array([0., -5.])

Save Pixels instance to disk, as a binary archive:

>>> pixels.save("pixels.pickle")
>>> pixels = kc.load("pixels.pickle")

Create deep copy of a Pixels instance:

>>> Pixels.copy()

Matplotlib plotting (optional, if Matplotlib is installed):

>>> fig, ax = pixels.plot()
>>> fig.show()

Plotly trace (optional, if Plotly is installed):

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

	Attributes

	
	pixels(M, N) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=2, dtype=float64]
	The 2D numpy array containing the pixel values. This class assumes a
uniform grid of pixels - that is, the pixel size in each dimension is
constant, but can vary from one dimension to another.

	xlim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower and upper boundaries of the pixellised volume in the
x-dimension, formatted as [x_min, x_max].

	ylim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower and upper boundaries of the pixellised volume in the
y-dimension, formatted as [y_min, y_max].

	pixel_size(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lengths of a pixel in the x- and y-dimensions, respectively.

	pixel_gridslist [https://docs.python.org/3/library/stdtypes.html#list][(M+1,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], (N+1,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]]
	A list containing the pixel gridlines in the x- and y-dimensions.
Each dimension’s gridlines are stored as a numpy of the pixel
delimitations, such that it has length (M + 1), where M is the number
of pixels in a given dimension.

	lower(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower left corner of the pixel rectangle; corresponds to
[xlim[0], ylim[0]].

	upper(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The upper right corner of the pixel rectangle; corresponds to
[xlim[1], ylim[1]].

	attrsdict [https://docs.python.org/3/library/stdtypes.html#dict][Any, Any]
	A dictionary storing any other user-defined information.

	
__init__(pixels_array, xlim, ylim, **kwargs)

	Pixels class constructor.

	Parameters

	
	pixels_array3D numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 3D numpy array, corresponding to a pre-defined pixel space.

	xlim(2,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lower and upper boundaries of the pixellised volume in the
x-dimension, formatted as [x_min, x_max].

	ylim(2,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lower and upper boundaries of the pixellised volume in the
y-dimension, formatted as [y_min, y_max].

	**kwargsextra keyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Extra user-defined attributes to be saved in .attrs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If pixels_array does not have exactly 2 dimensions or if
xlim or ylim do not have exactly 2 values each.

Notes

No copies are made if pixels_array, xlim and ylim are contiguous
NumPy arrays with dtype=float64.

Methods

	__init__(pixels_array, xlim, ylim, **kwargs)

	Pixels class constructor.

	add_lines(lines[, verbose])

	Pixellise a sample of lines, adding 1 to each pixel traversed, for each line in the sample.

	copy([pixels_array, xlim, ylim])

	Create a copy of the current Pixels instance, optionally with new pixels_array, xlim and / or ylim.

	from_lines(lines, number_of_pixels[, xlim, ...])

	Create a pixel space and traverse / pixellise a given sample of lines.

	from_physical(locations[, corner])

	Transform locations from physical dimensions to pixel indices.

	heatmap_trace([colorscale, transpose, xgap, ...])

	Create and return a Plotly Heatmap trace of the pixels.

	load(filepath)

	Load a saved / pickled Pixels object from filepath.

	plot([ax])

	Plot pixels as a heatmap using Matplotlib.

	save(filepath)

	Save a Pixels instance as a binary pickle object.

	to_physical(indices[, corner])

	Transform indices from pixel indices to physical dimensions.

	zeros(shape, xlim, ylim, **kwargs)

	

Attributes

	attrs

	

	lower

	

	pixel_grids

	

	pixel_size

	

	pixels

	

	upper

	

	xlim

	

	ylim

	

	
property pixels

	

	
property xlim

	

	
property ylim

	

	
property attrs

	

	
property pixel_size

	

	
property pixel_grids

	

	
property lower

	

	
property upper

	

	
static zeros(shape, xlim, ylim, **kwargs)

	

	
save(filepath)

	Save a Pixels instance as a binary pickle object.

Saves the full object state, including the inner .pixels NumPy array,
xlim, etc. in a fast, portable binary format. Load back the object
using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a Pixels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((640, 480))
>>> pixels = kc.Pixels(grid, [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = kc.Pixels.load("pixels.pickle")

	
static load(filepath)

	Load a saved / pickled Pixels object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.Pixels
	The loaded pept.Pixels instance.

Examples

Save a Pixels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((640, 480))
>>> pixels = kc.Pixels(grid, [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = kc.Pixels.load("pixels.pickle")

	
copy(pixels_array=None, xlim=None, ylim=None, **kwargs)

	Create a copy of the current Pixels instance, optionally with new
pixels_array, xlim and / or ylim.

The extra attributes in .attrs are propagated too. Pass new
attributes as extra keyword arguments.

	
from_physical(locations, corner=False)

	Transform locations from physical dimensions to pixel indices. If
corner = True, return the index of the bottom left corner of each
pixel; otherwise, use the pixel centres.

Examples

Create a simple konigcell.Pixels grid, spanning [-5, 5] mm in the
X-dimension and [10, 20] mm in the Y-dimension:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((5, 5), xlim=[-5, 5], ylim=[10, 20])
>>> pixels
Pixels

xlim = [-5. 5.]
ylim = [10. 20.]
pixels =
 (shape: (5, 5))
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
attrs = {}

>>> pixels.pixel_size
array([2., 2.])

Transform physical coordinates to pixel coordinates:

>>> pixels.from_physical([-5, 10], corner = True)
array([0., 0.])

>>> pixels.from_physical([-5, 10])
array([-0.5, -0.5])

The pixel coordinates are returned exactly, as real numbers. For pixel
indices, round them into values:

>>> pixels.from_physical([0, 15]).astype(int)
array([2, 2])

Multiple coordinates can be given as a 2D array / list of lists:

>>> pixels.from_physical([[0, 15], [5, 20]])
array([[2. , 2.],
 [4.5, 4.5]])

	
to_physical(indices, corner=False)

	Transform indices from pixel indices to physical dimensions. If
corner = True, return the coordinates of the bottom left corner of
each pixel; otherwise, use the pixel centres.

Examples

Create a simple konigcell.Pixels grid, spanning [-5, 5] mm in the
X-dimension and [10, 20] mm in the Y-dimension:

>>> import konigcell as kc
>>> pixels = kc.Pixels.zeros((5, 5), xlim=[-5, 5], ylim=[10, 20])
>>> pixels
Pixels

xlim = [-5. 5.]
ylim = [10. 20.]
pixels =
 (shape: (5, 5))
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
attrs = {}

>>> pixels.pixel_size
array([2., 2.])

Transform physical coordinates to pixel coordinates:

>>> pixels.to_physical([0, 0], corner = True)
array([-5., 10.])

>>> pixels.to_physical([0, 0])
array([-4., 11.])

Multiple coordinates can be given as a 2D array / list of lists:

>>> pixels.to_physical([[0, 0], [4, 3]])
array([[-4., 11.],
 [4., 17.]])

	
heatmap_trace(colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0)

	Create and return a Plotly Heatmap trace of the pixels.

	Parameters

	
	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the pixel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	transposebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Transpose the heatmap (i.e. flip it across its diagonal).

Examples

Create a Pixels array and plot it as a heatmap using Plotly:

>>> import konigcell as kc
>>> import numpy as np
>>> import plotly.graph_objs as go

>>> pixels_raw = np.arange(150).reshape(10, 15)
>>> pixels = kc.Pixels(pixels_raw, [-5, 5], [-5, 10])

>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

	
plot(ax=None)

	Plot pixels as a heatmap using Matplotlib.

Returns matplotlib figure and axes objects containing the pixel values
colour-coded in a Matplotlib image (i.e. heatmap).

	Parameters

	
	axmpl_toolkits.mplot3D.Axes3D object [https://docs.python.org/3/library/functions.html#object], optional
	The 3D matplotlib-based axis for plotting. If undefined, new
Matplotlib figure and axis objects are created.

	Returns

	
	fig, ax
	Matplotlib figure and axes objects.

Examples

Pixellise an array of lines and plot them with Matplotlib:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)

>>> fig, ax = pixels.plot()
>>> fig.show()

	
add_lines(lines, verbose=False)

	Pixellise a sample of lines, adding 1 to each pixel traversed, for
each line in the sample.

	Parameters

	
	lines(M, N >= 5) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The sample of 2D lines to pixellise. Each line is defined as a
timestamp followed by two 2D points, such that the data columns are
[time, x1, y1, x2, y2, …]. Note that there can be extra data
columns which will be ignored.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	Time the pixel traversal and print it to the terminal.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If lines has fewer than 5 columns.

	
static from_lines(lines, number_of_pixels, xlim=None, ylim=None, verbose=True)

	Create a pixel space and traverse / pixellise a given sample of
lines.

The number_of_pixels in each dimension must be defined. If the
pixel space boundaries xlim or ylim are not defined, they
are inferred as the boundaries of the lines.

	Parameters

	
	lines(M, N>=5) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lines that will be pixellised, each defined by a timestamp and
two 2D points, so that the data columns are [time, x1, y1, x2, y2].
Note that extra columns are ignored.

	number_of_pixels(2,) list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]
	The number of pixels in the x- and y-dimensions, respectively.

	xlim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the pixellised volume in the
x-dimension, formatted as [x_min, x_max]. If undefined, it is
inferred from the boundaries of lines.

	ylim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the pixellised volume in the
y-dimension, formatted as [y_min, y_max]. If undefined, it is
inferred from the boundaries of lines.

	Returns

	
	pept.Pixels
	A new Pixels object with the pixels through which the lines were
traversed.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If the input lines does not have the shape (M, N>=5). If the
number_of_pixels is not a 1D list with exactly 2 elements, or
any dimension has fewer than 2 pixels.

pept.Voxels

	
class pept.Voxels(voxels_array, xlim, ylim, zlim, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class managing a 3D voxel space with physical dimensions, including
tools for voxel manipulation and visualisation.

The .voxels attribute is simply a numpy.ndarray[ndim=3, dtype=float64].
The .attrs dictionary can be used to store extra information.

See also

	konigcell.Pixels
	A class managing a physical 2D pixel space.

	konigcell.dynamic3d
	Rasterize moving particles’ trajectories.

	konigcell.static3d
	Rasterize static particles’ positions.

	konigcell.dynamic_prob3d
	3D probability distribution of a quantity.

	Attributes

	
	voxels(M, N, P) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=3, dtype=float64]
	The 3D numpy array containing the voxel values. This class assumes a
uniform grid of voxels - that is, the voxel size in each dimension is
constant, but can vary from one dimension to another.

	xlim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max].

	ylim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max].

	zlim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max].

	voxel_size(3,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lengths of a voxel in the x-, y- and z-dimensions, respectively.

	voxel_grids(3,) list [https://docs.python.org/3/library/stdtypes.html#list][np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]]
	A list containing the voxel gridlines in the x-, y-, and z-dimensions.
Each dimension’s gridlines are stored as a numpy of the voxel
delimitations, such that it has length (M + 1), where M is the number
of voxels in given dimension.

	lower(3,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The lower left corner of the voxel box; corresponds to
[xlim[0], ylim[0], zlim[0]].

	upper(3,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray][ndim=1, dtype=float64]
	The upper right corner of the voxel box; corresponds to
[xlim[1], ylim[1], zlim[1]].

	attrsdict [https://docs.python.org/3/library/stdtypes.html#dict][Any, Any]
	A dictionary storing any other user-defined information.

	
__init__(voxels_array, xlim, ylim, zlim, **kwargs)

	Voxels class constructor.

	Parameters

	
	voxels_array3D numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 3D numpy array, corresponding to a pre-defined voxel space.

	xlim(2,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max].

	ylim(2,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max].

	zlim(2,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max].

	**kwargsextra keyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Extra user-defined attributes to be saved in .attrs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If voxels_array does not have exactly 3 dimensions or if
xlim, ylim or zlim do not have exactly 2 values each.

Methods

	__init__(voxels_array, xlim, ylim, zlim, ...)

	Voxels class constructor.

	add_lines(lines[, verbose])

	Voxellise a sample of lines, adding 1 to each voxel traversed, for each line in the sample.

	copy([voxels_array, xlim, ylim, zlim])

	Create a copy of the current Voxels instance, optionally with new voxels_array, xlim and / or ylim.

	cube_trace(index[, color, opacity, ...])

	Get the Plotly Mesh3d trace for a single voxel at index.

	cubes_traces([condition, color, opacity, ...])

	Get a list of Plotly Mesh3d traces for all voxels selected by the condition filtering function.

	from_lines(lines, number_of_voxels[, xlim, ...])

	Create a voxel space and traverse / voxellise a given sample of lines.

	from_physical(locations[, corner])

	Transform locations from physical dimensions to voxel indices.

	heatmap_trace([ix, iy, iz, width, ...])

	Create and return a Plotly Heatmap trace of a 2D slice through the voxels.

	load(filepath)

	Load a saved / pickled Voxels object from filepath.

	plot([condition, ax, alt_axes])

	Plot the voxels in this class using Matplotlib.

	plot_volumetric([condition, mode, colorscale])

	Create a volumetric PyVista plot - check the mode argument for the available types.

	save(filepath)

	Save a Voxels instance as a binary pickle object.

	scatter_trace([condition, size, color, ...])

	Create and return a trace for all the voxels in this class, with possible filtering.

	to_physical(indices[, corner])

	Transform indices from voxel indices to physical dimensions.

	vtk([condition])

	Return a PyVista VTK object, exposing all VTK functionality.

	zeros(shape, xlim, ylim, zlim, **kwargs)

	Create a Voxels object filled with zeros.

Attributes

	attrs

	

	lower

	

	upper

	

	voxel_grids

	

	voxel_size

	

	voxels

	

	xlim

	

	ylim

	

	zlim

	

	
property voxels

	

	
property xlim

	

	
property ylim

	

	
property zlim

	

	
property voxel_size

	

	
property voxel_grids

	

	
property lower

	

	
property upper

	

	
property attrs

	

	
save(filepath)

	Save a Voxels instance as a binary pickle object.

Saves the full object state, including the inner .voxels NumPy array,
xlim, etc. in a fast, portable binary format. Load back the object
using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a Voxels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((64, 48, 32))
>>> voxels = kc.Voxels(grid, [0, 20], [0, 10])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = kc.Voxels.load("voxels.pickle")

	
static load(filepath)

	Load a saved / pickled Voxels object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.Voxels
	The loaded pept.Voxels instance.

Examples

Save a Voxels instance, then load it back:

>>> import numpy as np
>>> import konigcell as kc
>>>
>>> grid = np.zeros((64, 48, 32))
>>> voxels = kc.Voxels(grid, [0, 20], [0, 10])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = kc.Voxels.load("voxels.pickle")

	
copy(voxels_array=None, xlim=None, ylim=None, zlim=None, **kwargs)

	Create a copy of the current Voxels instance, optionally with new
voxels_array, xlim and / or ylim.

The extra attributes in .attrs are propagated too. Pass new
attributes as extra keyword arguments.

	
static zeros(shape, xlim, ylim, zlim, **kwargs)

	Create a Voxels object filled with zeros.

	
from_physical(locations, corner=False)

	Transform locations from physical dimensions to voxel indices. If
corner = True, return the index of the bottom left corner of each
voxel; otherwise, use the voxel centres.

Examples

Create a simple konigcell.Voxels grid, spanning [-5, 5] mm in the
X-dimension, [10, 20] mm in the Y-dimension and [0, 10] in Z:

>>> import konigcell as kc
>>> voxels = kc.Voxels.zeros((5, 5, 5), xlim=[-5, 5], ylim=[10, 20],
 zlim=[0, 10])
>>> voxels
Voxels

xlim = [-5. 5.]
ylim = [10. 20.]
zlim = [10. 20.]
voxels =
 (shape: (5, 5, 5))
 [[[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 ...
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]]
attrs = {}

>>> voxels.voxel_size
array([2., 2., 2.])

Transform physical coordinates to voxel coordinates:

>>> voxels.from_physical([-5, 10, 0], corner = True)
array([0., 0., 0.])

>>> voxels.from_physical([-5, 10, 0])
array([-0.5, -0.5, -0.5])

The voxel coordinates are returned exactly, as real numbers. For voxel
indices, round them into values:

>>> voxels.from_physical([0, 15, 0]).astype(int)
array([2, 2, 0])

Multiple coordinates can be given as a 2D array / list of lists:

>>> voxels.from_physical([[0, 15, 0], [5, 20, 10]])
array([[2. , 2. , -0.5],
 [4.5, 4.5, 4.5]])

	
to_physical(indices, corner=False)

	Transform indices from voxel indices to physical dimensions. If
corner = True, return the coordinates of the bottom left corner of
each voxel; otherwise, use the voxel centres.

Examples

Create a simple konigcell.Voxels grid, spanning [-5, 5] mm in the
X-dimension, [10, 20] mm in the Y-dimension and [0, 10] in Z:

>>> import konigcell as kc
>>> voxels = kc.Voxels.zeros((5, 5, 5), xlim=[-5, 5], ylim=[10, 20],
 zlim=[0, 10])
>>> voxels
Voxels

xlim = [-5. 5.]
ylim = [10. 20.]
zlim = [10. 20.]
voxels =
 (shape: (5, 5, 5))
 [[[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 ...
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]
 [[0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]
 ...
 [0. 0. ... 0. 0.]
 [0. 0. ... 0. 0.]]]
attrs = {}

>>> voxels.voxel_size
array([2., 2., 2.])

Transform physical coordinates to voxel coordinates:

>>> voxels.to_physical([0, 0, 0], corner = True)
array([-5., 10., 0.])

>>> voxels.to_physical([0, 0, 0])
array([-4., 11., 1.])

Multiple coordinates can be given as a 2D array / list of lists:

>>> voxels.to_physical([[0, 0, 0], [4, 4, 3]])
array([[-4., 11., 1.],
 [4., 19., 7.]])

	
plot(condition=<function Voxels.<lambda>>, ax=None, alt_axes=False)

	Plot the voxels in this class using Matplotlib.

This plots the centres of all voxels encapsulated in a pept.Voxels
instance, colour-coding the voxel value.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all voxels that have a value larger
than 0.

	Parameters

	
	conditionfunction, default lambda voxel_data: voxel_data > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	axmpl_toolkits.mplot3D.Axes3D object [https://docs.python.org/3/library/functions.html#object], optional
	The 3D matplotlib-based axis for plotting. If undefined, new
Matplotlib figure and axis objects are created.

	alt_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If True, plot using the alternative PEPT-style axes convention:
z is horizontal, y points upwards. Because Matplotlib cannot swap
axes, this is achieved by swapping the parameters in the plotting
call (i.e. plt.plot(x, y, z) -> plt.plot(z, x, y)).

	Returns

	
	fig, ax
	Matplotlib figure and axes objects.

Notes

Plotting all points is very computationally-expensive for matplotlib.
It is recommended to only plot a couple of samples at a time, or use
Plotly, which is faster.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> import konigcell as kc
>>>
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = kc.Voxels(lines, number_of_voxels)

>>> fig, ax = voxels.plot()
>>> fig.show()

	
plot_volumetric(condition=<function Voxels.<lambda>>, mode='box', colorscale='magma')

	Create a volumetric PyVista plot - check the mode argument for
the available types.

	Parameters

	
	conditionfunction, default lambda voxel_data: voxel_data > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	mode“box”, “plane”, “slice”
	Use a VTK clip box, clip plane or clip slice.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “magma”
	The PyVista colorscale to use.

	Returns

	
	pyvista.Plotter
	A PyVista Figure object that can be .show().

	
vtk(condition=<function Voxels.<lambda>>)

	Return a PyVista VTK object, exposing all VTK functionality.

	Parameters

	
	conditionfunction, default lambda voxel_data: voxel_data > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	Returns

	
	pyvista.UniformGrid
	A VTK UniformGrid object.

	
cube_trace(index, color=None, opacity=0.4, colorbar=True, colorscale='magma')

	Get the Plotly Mesh3d trace for a single voxel at index.

This renders the voxel as a cube. While visually accurate, this method
is very computationally intensive - only use it for fewer than 100
cubes. For more voxels, use the voxels_trace method.

	Parameters

	
	index(3,) tuple [https://docs.python.org/3/library/stdtypes.html#tuple]
	The voxel indices, given as a 3-tuple.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.4
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the voxel values. Is overridden if
color is set.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If index does not contain exactly three values.

Notes

If you want to render a small number of voxels as cubes using Plotly,
use the cubes_traces method, which creates a list of individual cubes
for all voxels, using this function.

	
cubes_traces(condition=<function Voxels.<lambda>>, color=None, opacity=0.4, colorbar=True, colorscale='magma')

	Get a list of Plotly Mesh3d traces for all voxels selected by the
condition filtering function.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all voxels that have a value larger
than 0.

This renders each voxel as individual cubes. While visually accurate,
this method is very computationally intensive - only use it for fewer
than 100 cubes. For more voxels, use the voxels_trace method.

	Parameters

	
	conditionfunction, default lambda voxels: voxels > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.4
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the voxel values. Is overridden if
color is set.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

Examples

Plot a konigcell.Voxels on a plotly.graph_objs.Figure.

>>> import konigcell as kc
>>> voxels = ...

>>> import plotly.graph_objs as go
>>>
>>> fig = go.Figure()
>>> fig.add_traces(voxels.cubes_traces()) # small number of voxels
>>> fig.show()

	
scatter_trace(condition=<function Voxels.<lambda>>, size=4, color=None, opacity=0.4, colorbar=True, colorscale='Magma', colorbar_title=None)

	Create and return a trace for all the voxels in this class, with
possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of
all voxels encapsulated in a pept.Voxels instance, colour-coding the
voxel value.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all voxels that have a value larger
than 0.

	Parameters

	
	conditionfunction, default lambda voxel_data: voxel_data > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	sizefloat [https://docs.python.org/3/library/functions.html#float], default 4
	The size of the plotted voxel points. Note that due to the large
number of voxels in typical applications, the voxel centres are
plotted as square points, which provides an easy to understand
image that is also fast and responsive.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.4
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the voxel values. Is overridden if
color is set.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels.from_lines(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(voxels.voxels_trace())
>>> grapher.show()

	
heatmap_trace(ix=None, iy=None, iz=None, width=0, colorscale='Magma', transpose=True)

	Create and return a Plotly Heatmap trace of a 2D slice through the
voxels.

The orientation of the slice is defined by the input ix (for the YZ
plane), iy (XZ), iz (XY) parameters - which correspond to the
voxel index in the x-, y-, and z-dimension. Importantly, at least one
of them must be defined.

	Parameters

	
	ixint [https://docs.python.org/3/library/functions.html#int], optional
	The index along the x-axis of the voxels at which a YZ slice is to
be taken. One of ix, iy or iz must be defined.

	iyint [https://docs.python.org/3/library/functions.html#int], optional
	The index along the y-axis of the voxels at which a XZ slice is to
be taken. One of ix, iy or iz must be defined.

	izint [https://docs.python.org/3/library/functions.html#int], optional
	The index along the z-axis of the voxels at which a XY slice is to
be taken. One of ix, iy or iz must be defined.

	widthint [https://docs.python.org/3/library/functions.html#int], default 0
	The number of voxel layers around the given slice index to collapse
(i.e. accumulate) onto the heatmap.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	transposebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Transpose the heatmap (i.e. flip it across its diagonal).

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If neither of ix, iy or iz was defined.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(voxels.heatmap_trace())
>>> fig.show()

	
add_lines(lines, verbose=False)

	Voxellise a sample of lines, adding 1 to each voxel traversed, for
each line in the sample.

	Parameters

	
	lines(M, N >= 7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The sample of 3D lines to voxellise. Each line is defined as a
timestamp followed by two 3D points, such that the data columns are
[time, x1, y1, z1, x2, y2, z2, …]. Note that there can be extra
data columns which will be ignored.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	Time the voxel traversal and print it to the terminal.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If lines has fewer than 7 columns.

	
static from_lines(lines, number_of_voxels, xlim=None, ylim=None, zlim=None, verbose=True)

	Create a voxel space and traverse / voxellise a given sample of
lines.
The number_of_voxels in each dimension must be defined. If the
voxel space boundaries xlim, ylim or zlim are not defined, they
are inferred as the boundaries of the lines.

	Parameters

	
	lines(M, N>=7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.LineData
	The lines that will be voxellised, each defined by a timestamp and
two 3D points, so that the data columns are [time, x1, y1, z1,
x2, y2, z2, …]. Note that extra columns are ignored.

	number_of_voxels(3,) list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]]
	The number of voxels in the x-, y-, and z-dimensions, respectively.

	xlim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max]. If undefined, it is
inferred from the boundaries of lines.

	ylim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max]. If undefined, it is
inferred from the boundaries of lines.

	zlim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max]. If undefined, it is
inferred from the boundaries of lines.

	Returns

	
	pept.Voxels
	A new Voxels object with the voxels through which the lines were
traversed.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If the input lines does not have the shape (M, N>=7). If the
number_of_voxels is not a 1D list with exactly 3 elements, or
any dimension has fewer than 2 voxels.

pept.Pipeline

	
class pept.Pipeline(transformers)

	Bases: PEPTObject

A PEPT processing pipeline, chaining multiple Filter and Reducer
for efficient, parallel execution.

After a pipeline is constructed, the fit(samples) method can be called,
which will apply the chain of filters and reducers on the samples of data.

A filter is simply a transformation applied to a sample (e.g. Voxelliser
on a single sample of LineData). A reducer is a transformation applied to
a list of all samples (e.g. Stack on all samples of PointData).

Note that only filters can be applied in parallel, but the great advantage
of a Pipeline is that it significantly reduces the amount of data copying
and intermediate results’ storage. Reducers will require collecting all
results.

There are three execution policies at the moment: “sequential” is
single-threaded (slower, but easy to debug), “joblib” (very fast on medium
datasets due to joblib’s caching) and any concurrent.futures.Executor
subclass (e.g. MPIPoolExecutor for parallel processing on distributed
clusters).

Examples

A pipeline can be created in two ways: either by adding (+) multiple
transformers together, or explicitly constructing the Pipeline class.

The first method is the most straightforward:

>>> import pept

>>> filter1 = pept.tracking.Cutpoints(max_distance = 0.5)
>>> filter2 = pept.tracking.HDBSCAN(true_fraction = 0.1)
>>> reducer = pept.tracking.Stack()
>>> pipeline = filter1 + filter2 + reducer

>>> print(pipeline)
Pipeline

transformers = [
 Cutpoints(append_indices = False, cutoffs = None, max_distance = 0.5)
 HDBSCAN(clusterer = HDBSCAN(), max_tracers = 1, true_fraction = 0.1)
 Stack(overlap = None, sample_size = None)
]

>>> lors = pept.LineData(...) # Some samples of lines
>>> points = pipeline.fit(lors)

The chain of filters can also be applied to a single sample:

>>> point = pipeline.fit_sample(lors[0])

The pipeline’s fit method allows specifying an execution policy:

>>> points = pipeline.fit(lors, executor = "sequential")
>>> points = pipeline.fit(lors, executor = "joblib")

>>> from mpi4py.futures import MPIPoolExecutor
>>> points = pipeline.fit(lors, executor = MPIPoolExecutor)

The pept.Pipeline constructor can also be called directly, which allows
the enumeration of filters:

>>> pipeline = pept.Pipeline([filter1, filter2, reducer])

Adding new filters is very easy:

>>> pipeline_extra = pipeline + filter2

	Attributes

	
	transformerslist [https://docs.python.org/3/library/stdtypes.html#list][pept.base.Filter or pept.base.Reducer]
	The list of Transformer to be applied; this includes both Filter and Reducer instances.

	
__init__(transformers)

	Construct the class from an iterable of Filter, Reducer
and/or other Pipeline instances (which will be flattened).

Methods

	__init__(transformers)

	Construct the class from an iterable of Filter, Reducer and/or other Pipeline instances (which will be flattened).

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply all transformers defined to all samples.

	fit_sample(sample)

	Apply all transformers - consecutively - to a single sample of data.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	optimise(lines[, max_evals, executor, ...])

	

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	steps()

	Return the order of processing steps to apply as a list where all consecutive sequences of filters are collapsed into tuples.

Attributes

	filters

	Only the Filter instances from the transformers.

	reducers

	Only the Reducer instances from the transformers.

	transformers

	The list of Transformer to be applied; this includes both Filter and Reducer instances.

	
property filters

	Only the Filter instances from the transformers. They can be
applied in parallel.

	
property reducers

	Only the Reducer instances from the transformers. They require
collecting all parallel results.

	
property transformers

	The list of Transformer to be applied; this includes both Filter
and Reducer instances.

	
fit_sample(sample)

	Apply all transformers - consecutively - to a single sample of data.
The output type is simply what the transformers return.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply all transformers defined to all samples. Filters are applied
according to the executor policy (e.g. parallel via “joblib”), while
reducers are applied on a single thread.

	Parameters

	
	samplesIterable
	An iterable (e.g. list, tuple, LineData, list[PointData]), whose
elements will be passed through the pipeline.

	executor“sequential”, “joblib”, or concurrent.futures.Executor subclass, default “joblib”
	The execution policy controlling how the chain of filters are
applied to each sample in samples; “sequential” is single
threaded (slow, but easy to debug), “joblib” is multi-threaded
(very fast due to joblib’s caching). Alternatively, a
concurrent.futures.Executor subclass can be used (e.g.
MPIPoolExecutor for distributed computing on clusters).

	max_workersint [https://docs.python.org/3/library/functions.html#int], optional
	The maximum number of workers to use for parallel executors. If
None (default), the maximum number of CPUs are used.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If True, show extra information during processing, e.g. loading
bars.

	
steps()

	Return the order of processing steps to apply as a list where all
consecutive sequences of filters are collapsed into tuples.

E.g. [F, F, R, F, R, R, F, F, F] -> [(F, F), R, (F), R, R, (F, F, F)].

	
optimise(lines, max_evals=200, executor='joblib', max_workers=None, verbose=True, **free_parameters)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.TimeWindow

	
class pept.TimeWindow(window: float [https://docs.python.org/3/library/functions.html#float])

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Define a sample_size as a fixed time window / slice. You can use this
as a direct replacement of the sample_size and overlap.

points = pept.PointData(sample_size = pept.TimeWindow(5.5))

	
__init__(window: float [https://docs.python.org/3/library/functions.html#float]) → None [https://docs.python.org/3/library/constants.html#None]

	

Methods

	__init__(window)

	

Attributes

	window

	

	
window: float [https://docs.python.org/3/library/functions.html#float]

	

pept.AdaptiveWindow

	
class pept.AdaptiveWindow(window: float [https://docs.python.org/3/library/functions.html#float], max_elems: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Define a sample_size as a time window with a maximum limit of
elements. All samples with more than max_elems elements will be
shortened.

You can use this as a direct replacement of the sample_size and
overlap.

points = pept.PointData(sample_size = pept.AdaptiveWindow(5.5, 200))
points.overlap = AdaptiveWindow(2.)

The adaptive time window approach combines the advantages of fixed sample
sizes and time windowing:

	Time windows are robust to tracers moving in and out of the field of
view, as they simply ignore the time slices where almost no LoRs are
recorded.

	Fixed sample sizes effectively adapt their spatio-temporal resolution,
allowing for higher accuracy when tracers are passing through more
active scanner regions.

All samples with more than ideal_elems are shortened, such that time
windows are shrinked when the tracer activity permits. There exists an
ideal time window such that most samples will have roughly ideal_elems,
with a few higher activity ones that are shortened; OptimizeWindow
finds this ideal time window for pept.AdaptiveWindow.

New in pept-0.5.1

	
__init__(window: float [https://docs.python.org/3/library/functions.html#float], max_elems: int [https://docs.python.org/3/library/functions.html#int] = 9223372036854775807)

	

Methods

	__init__(window[, max_elems])

	

Base / Abstract Classes (pept.base)

	pept.base.PEPTObject()

	Base class for all PEPT-oriented objects.

	pept.base.IterableSamples(data[, ...])

	An class for iterating through an array (or array-like) in samples with potential overlap.

	pept.base.Transformer()

	Base class for PEPT filters (transforming a sample into another) and reducers (transforming a list of samples).

	pept.base.Filter()

	Abstract class from which PEPT filters inherit.

	pept.base.Reducer()

	Abstract class from which PEPT reducers inherit.

	pept.base.PointDataFilter()

	An abstract class that defines a filter for samples of pept.PointData.

	pept.base.LineDataFilter()

	An abstract class that defines a filter for samples of pept.LineData.

	pept.base.VoxelsFilter()

	An abstract class that defines a filter for samples of pept.Voxels.

pept.base.PEPTObject

	
class pept.base.PEPTObject

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for all PEPT-oriented objects.

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.IterableSamples

	
class pept.base.IterableSamples(data, sample_size=None, overlap=None, columns=[], **kwargs)

	Bases: PEPTObject, Collection [https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection]

An class for iterating through an array (or array-like) in samples with
potential overlap.

This class can be used to access samples of data of an adaptive
sample_size and overlap without requiring additional storage.

The samples from the underlying data can be accessed using both indexing
(samples[0]) and iteration (for sample in samples: ...).

	Particular cases:
	
	If sample_size == 0, all data_samples is returned as one single
sample.

	If overlap >= sample_size, an error is raised.

	If overlap < 0, lines are skipped between samples.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size unless sample_size is 0. Overlap
must be smaller than sample_size. Note that it can also be negative.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	Attributes

	
	dataiterable [https://docs.python.org/3/glossary.html#term-iterable] that supports slicing
	An iterable (e.g. numpy array) that supports slicing syntax (data[5:7])
storing the data that will be iterated over in samples.

	sample_sizeint [https://docs.python.org/3/library/functions.html#int]
	The number of rows in data to be returned in a single sample. A
sample_size of 0 yields all the data as a single sample.

	overlapint [https://docs.python.org/3/library/functions.html#int]
	The number of overlapping rows from data between two consecutive
samples. An overlap of 0 implies consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by
one. A negative overlap implies skipping values between samples.

	
__init__(data, sample_size=None, overlap=None, columns=[], **kwargs)

	IterableSamples class constructor.

	Parameters

	
	dataiterable [https://docs.python.org/3/glossary.html#term-iterable]
	The data that will be iterated over in samples; most commonly a
NumPy array.

	sample_sizeint [https://docs.python.org/3/library/functions.html#int] or Iterable[Int], optional
	The number of rows in data to be returned in a single sample. A
sample_size of 0 yields all the data as a single sample.

	overlapint [https://docs.python.org/3/library/functions.html#int], optional
	The number of overlapping rows from data between two consecutive
samples. An overlap of 0 implies consecutive samples, while an
overlap of (sample_size - 1) means incrementing the samples by
one. A negative overlap implies skipping values between samples.

Methods

	__init__(data[, sample_size, overlap, columns])

	IterableSamples class constructor.

	copy([deep, data, extra, hidden])

	Construct a similar object, optionally with different data.

	extra_attrs()

	

	hidden_attrs()

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	attrs

	

	columns

	

	data

	

	overlap

	

	sample_size

	

	samples_indices

	

	
property data

	

	
property columns

	

	
property attrs

	

	
extra_attrs()

	

	
hidden_attrs()

	

	
property samples_indices

	

	
property sample_size

	

	
property overlap

	

	
copy(deep=True, data=None, extra=True, hidden=True, **attrs)

	Construct a similar object, optionally with different data. If
extra, extra attributes are propagated; same for hidden.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Transformer

	
class pept.base.Transformer

	Bases: ABC [https://docs.python.org/3/library/abc.html#abc.ABC], PEPTObject

Base class for PEPT filters (transforming a sample into another) and
reducers (transforming a list of samples).

You should only need to subclass Filter and Reducer (or even, better,
their more specialised subclasses, e.g. LineDataFilter).

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Filter

	
class pept.base.Filter

	Bases: Transformer

Abstract class from which PEPT filters inherit. You only need to define
a method def fit_sample(self, sample), which processes a single sample.

If you define a filter on LineData, you should subclass LineDataFilter.
Same goes for PointData with PointDataFilter.

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
abstract fit_sample(sample)

	

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Reducer

	
class pept.base.Reducer

	Bases: Transformer

Abstract class from which PEPT reducers inherit. You only need to define
a method def fit(self, samples), which processes an iterable of samples
(most commonly a LineData or PointData).

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
abstract fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.PointDataFilter

	
class pept.base.PointDataFilter

	Bases: Filter

An abstract class that defines a filter for samples of pept.PointData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample
on each sample from an iterable according to a given execution policy
(e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses,
such as ProcessPoolExecutor or MPIPoolExecutor).

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(point_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(point_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
abstract fit_sample(sample)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.LineDataFilter

	
class pept.base.LineDataFilter

	Bases: Filter

An abstract class that defines a filter for samples of pept.LineData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample
on each sample from an iterable according to a given execution policy
(e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses,
such as ProcessPoolExecutor or MPIPoolExecutor).

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
abstract fit_sample(sample)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.VoxelsFilter

	
class pept.base.VoxelsFilter

	Bases: Filter

An abstract class that defines a filter for samples of pept.Voxels.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample
on each sample from an iterable according to a given execution policy
(e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses,
such as ProcessPoolExecutor or MPIPoolExecutor).

	
__init__(*args, **kwargs)

	

Methods

	__init__(*args, **kwargs)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(voxels[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(voxels, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
abstract fit_sample(sample)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Initialising Scanner Data (pept.scanners)

Convert data from different PET / PEPT scanner geometries and data formats
into the common base classes.

The PEPT base classes PointData, LineData, and VoxelData are abstractions
over the type of data that may be encountered in the context of PEPT (e.g. LoRs
are LineData, trajectory points are PointData). Once the raw data is
transformed into the common formats, any tracking, analysis or visualisation
algorithm in the pept package can be used interchangeably.

The pept.scanners subpackage provides modules for transforming the raw data
from different PET / PEPT scanner geometries (parallel screens, modular
cameras, etc.) and data formats (binary, ASCII, etc.) into the common base
classes.

If you’d like to integrate another scanner geometry or raw data format into
this package, you can check out the pept.scanners.parallel_screens function
as an example. This usually only involves writing a single function by hand;
then all functionality from LineData will be available to your new data
format, for free.

	pept.scanners.adac_forte(filepath[, ...])

	Initialise PEPT lines of response (LoRs) from a binary file outputted by the ADAC Forte parallel screen detector list mode (common file extension ".da01").

	pept.scanners.parallel_screens(...[, ...])

	Initialise PEPT LoRs for parallel screens PET/PEPT detectors from an input CSV file or array.

	pept.scanners.ADACGeometricEfficiency(separation)

	Compute the geometric efficiency of a parallel screens PEPT detector at different 3D coordinates using Antonio Guida's formula [R71bb6ad21a70-1].

	pept.scanners.modular_camera(data_file[, ...])

	Initialise PEPT LoRs from the modular camera DAQ.

pept.scanners.adac_forte

	
pept.scanners.adac_forte(filepath, sample_size=None, overlap=None, verbose=True)

	Initialise PEPT lines of response (LoRs) from a binary file outputted by
the ADAC Forte parallel screen detector list mode (common file extension
“.da01”).

	Parameters

	
	filepathstr [https://docs.python.org/3/library/stdtypes.html#str]
	The path to a ADAC Forte-generated binary file from which the LoRs
will be read into the LineData format. If you have multiple files,
use a wildcard (*) after their common substring to concatenate them,
e.g. “DS1.da*” will add [“DS1.da01”, “DS1.da02”, “DS1.da02_02”].

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the
data as one single sample. A good starting value would be 200 times
the maximum number of tracers that would be tracked.

	overlapint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the overlap between two consecutive samples
that are returned when iterating over lines. An overlap of 0
implies consecutive samples, while an overlap of
(sample_size - 1) means incrementing the samples by one. A
negative overlap means skipping values between samples. An error is
raised if overlap is larger than or equal to sample_size.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	An option that enables printing the time taken for the
initialisation of an instance of the class. Useful when reading
large files (10gb files for PEPT data is not unheard of).

	Returns

	
	LineData
	The initialised LoRs.

	Raises

	
	FileNotFoundError [https://docs.python.org/3/library/exceptions.html#FileNotFoundError]
	If the input filepath does not exist.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size. Overlap has to be smaller than
sample_size. Note that it can also be negative.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a ParallelScreens array for three LoRs on a parallel screens
PEPT scanner (i.e. each line is defined by two points each) with a
head separation of 500 mm:

>>> lors = pept.scanners.adac_forte("binary_data_adac.da01")
Initialised the PEPT data in 0.011 s.

>>> lors
LineData

sample_size = 0
overlap = 0
samples = 1
lines =
 [[0.00000000e+00 1.62250000e+02 3.60490000e+02 ... 4.14770000e+02
 3.77010000e+02 3.10000000e+02]
 [4.19512195e-01 2.05910000e+02 2.68450000e+02 ... 3.51640000e+02
 2.95000000e+02 3.10000000e+02]
 [8.39024390e-01 3.16830000e+02 1.26260000e+02 ... 2.74350000e+02
 3.95300000e+02 3.10000000e+02]
 ...
 [1.98255892e+04 2.64320000e+02 2.43080000e+02 ... 2.25970000e+02
 4.01200000e+02 3.10000000e+02]
 [1.98263928e+04 3.19780000e+02 3.38660000e+02 ... 2.75530000e+02
 5.19200000e+02 3.10000000e+02]
 [1.98271964e+04 2.41310000e+02 4.15360000e+02 ... 2.91460000e+02
 4.63150000e+02 3.10000000e+02]]
lines.shape = (32526, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.parallel_screens

	
pept.scanners.parallel_screens(filepath_or_array, screen_separation, sample_size=None, overlap=None, verbose=True, **kwargs)

	Initialise PEPT LoRs for parallel screens PET/PEPT detectors from an
input CSV file or array.

The expected data columns in the file are `[time, x1, y1, x2, y2]`.
This is automatically transformed into the standard Lines format with
columns being [time, x1, y1, z1, x2, y2, z2], where z1 = 0 and
z2 = screen_separation.

ParallelScreens can be initialised with a predefined numpy array of LoRs
or read data from a .csv.

	Parameters

	
	filepath_or_array[str [https://docs.python.org/3/library/stdtypes.html#str], pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path], IO] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] (N, 5)
	A path to a file to be read from or an array for initialisation. A
path is a string with the (absolute or relative) path to the data
file or a URL from which the PEPT data will be read. It should
include the full file name, along with its extension (.csv, .a01,
etc.).

	screen_separationfloat [https://docs.python.org/3/library/functions.html#float]
	The separation (in mm) between the two PEPT screens corresponding
to the z coordinate of the second point defining each line. The
attribute lines, with columns
[time, x1, y1, z1, x2, y2, z2], will have z1 = 0 and
z2 = screen_separation.

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the
data as one single sample. A good starting value would be 200 times
the maximum number of tracers that would be tracked.

	overlapint [https://docs.python.org/3/library/functions.html#int], default 0
	An int that defines the overlap between two consecutive samples
that are returned when iterating over lines. An overlap of 0
implies consecutive samples, while an overlap of
(sample_size - 1) means incrementing the samples by one. A
negative overlap means skipping values between samples. An error is
raised if overlap is larger than or equal to sample_size.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	An option that enables printing the time taken for the
initialisation of an instance of the class. Useful when reading
large files (10gb files for PEPT data is not unheard of).

	**kwargsother keyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Other keyword arguments to be passed to pept.read_csv, e.g.
“skiprows” or “max_rows”. See the pept.read_csv documentation for
other arguments.

	Returns

	
	LineData
	The initialised LoRs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size. Overlap has to be smaller than
sample_size. Note that it can also be negative.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If the data file does not have the (N, M >= 5) shape.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a LineData array for three LoRs on a parallel screens
PEPT scanner (i.e. each line is defined by two points each) with a
head separation of 500 mm:

>>> lors_raw = np.array([
>>> [2, 100, 150, 200, 250],
>>> [4, 350, 250, 100, 150],
>>> [6, 450, 350, 250, 200]
>>>])

>>> screen_separation = 500
>>> lors = pept.scanners.parallel_screens(lors_raw, screen_separation)
Initialised PEPT data in 0.001 s.

>>> lors
LineData

sample_size = 0
overlap = 0
samples = 1
lines =
 [[2. 100. 150. 0. 200. 250. 500.]
 [4. 350. 250. 0. 100. 150. 500.]
 [6. 450. 350. 0. 250. 200. 500.]]
lines.shape = (3, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.ADACGeometricEfficiency

	
class pept.scanners.ADACGeometricEfficiency(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])

	Bases: PEPTObject

Compute the geometric efficiency of a parallel screens PEPT detector at
different 3D coordinates using Antonio Guida’s formula [1].

The default xlim and ylim values represent the active detector area of
the ADAC Forte scanner used at the University of Birmingham, but can be
changed to any parallel screens detector active area range.

This class assumes PEPT coordinates, with the Y and Z axes being swapped,
such that Y points upwards and Z is perpendicular to the two detectors.

References

	1

	Guida A. Positron emission particle tracking applied to solid-liquid
mixing in mechanically agitated vessels (Doctoral dissertation,
University of Birmingham).

Examples

Simply instantiate the class with the head separation, then ‘call’ it with
the (x, y, z) coordinates of the point at which to evaluate the geometric
efficiency:

>>> import pept
>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

Alternatively, the separation may be specified using the both the starting
and ending limits:

>>> separation = [-10, 510]
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

You can evaluate multiple points by using a list / array of values:

>>> geom([250, 260], 250, 250)
array([0.18669302, 0.19730517])

Compute the variation in geometric efficiency in the XY plane:

>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)

>>> # Range of x, y values to evaluate the geometric efficiency at
>>> import numpy as np
>>> x = np.linspace(120, 480, 100)
>>> y = np.linspace(50, 550, 100)
>>> z = 250

>>> # Evaluate EG on a 2D grid of values at all combinations of x, y
>>> xx, yy = np.meshgrid(x, y)
>>> eg = geom(xx, yy, z)

The geometric efficiencies can be visualised using a Plotly heatmap or
contour plot:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(go.Contour(x = x, y = y, z = eg))
>>> fig.show()

For an interactive 3D volumetric / voxel plot, you can use PyVista:

>>> # Import necessary libraries; you may need to install PyVista
>>> import numpy as np
>>> import pept
>>> import pyvista as pv

>>> # Instantiate the ADACGeometricEfficiency class
>>> geom = pept.scanners.ADACGeometricEfficiency(500)

>>> # Lower and upper corners of the grid over which to compute the GE
>>> lower = np.array([115, 50, 5])
>>> upper = np.array([490, 550, 495])

>>> # Create 3D meshgrid of values and evaluate the GE at each point
>>> n = 40
>>> x = np.linspace(lower[0], upper[0], n)
>>> y = np.linspace(lower[1], upper[1], n)
>>> z = np.linspace(lower[2], upper[2], n)
>>> xx, yy, zz = np.meshgrid(x, y, z)
>>> eg = geom(xx, yy, zz)

>>> # Create PyVista grid of values
>>> grid = pv.UniformGrid()
>>> grid.dimensions = np.array(eg.shape) + 1
>>> grid.origin = lower
>>> grid.spacing = (upper - lower) / n
>>> grid.cell_arrays["values"] = eg.flatten(order="F")

>>> # Create PyVista volumetric / voxel plot with an interactive clipper
>>> p = pv.Plotter()
>>> p.add_mesh_clip_plane(grid)
>>> p.show()

	Attributes

	
	xlim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], default [111.78, 491.78]
	The limits of the active detector area in the x-dimension.

	ylim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], default [46.78, 556.78]
	The limits of the active detector area in the y-dimension.

	zlim(2,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The limits of the active detector area in the z-dimension.

	
__init__(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])

	

Methods

	__init__(separation[, xlim, ylim])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	eg(x, y, z)

	Return the geometric efficiency evaluated at a single point (x, y, z) in PEPT coordinates, i.e. Y points upwards.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
eg(x, y, z)

	Return the geometric efficiency evaluated at a single point
(x, y, z) in PEPT coordinates, i.e. Y points upwards.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.scanners.modular_camera

	
pept.scanners.modular_camera(data_file, sample_size=None, overlap=None, verbose=True)

	Initialise PEPT LoRs from the modular camera DAQ.

Can read data from a .da_1 file or equivalent. The file must contain
the standard datawords from the modular camera output. This will then
be automatically transformed into the standard LineData format
with every row being [time, x1, y1, z1, x2, y2, z2], where the geometry
is derived from the C-extension. The current useable geometry is a square
layout with 4 stacks for 4 modules, separated by 250 mm.

	Parameters

	
	data_filestr [https://docs.python.org/3/library/stdtypes.html#str]
	A string with the (absolute or relative) path to the data file
from which the PEPT data will be read. It should include the
full file name, along with the extension (.da_1)

	sample_sizeint [https://docs.python.org/3/library/functions.html#int], optional
	An int` that defines the number of lines that should be
returned when iterating over _lines. A sample_size of 0
yields all the data as one single sample. (Default is 200)

	overlapint [https://docs.python.org/3/library/functions.html#int], optional
	An int that defines the overlap between two consecutive
samples that are returned when iterating over _lines.
An overlap of 0 means consecutive samples, while an overlap
of (sample_size - 1) means incrementing the samples by one.
A negative overlap means skipping values between samples. An
error is raised if overlap is larger than or equal to
sample_size. (Default is 0)

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], optional
	An option that enables printing the time taken for the
initialisation of an instance of the class. Useful when
reading large files (10gb files for PEPT data is not unheard
of). (Default is True)

	Returns

	
	LineData
	The initialised LoRs.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If overlap >= sample_size. Overlap has to be smaller than
sample_size. Note that it can also be negative.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If the data file does not have (N, 7) shape.

Tracking Algorithms (pept.tracking)

Tracer location, identification and tracking algorithms.

The pept.tracking subpackage hosts different tracking algorithms, working
with both the base classes, as well as with generic NumPy arrays.

All algorithms here are either pept.base.Filter or pept.base.Reducer
subclasses, implementing the .fit and .fit_sample methods; here is an
example using PEPT-ML:

>>> from pept.tracking import *
>>>
>>> cutpoints = Cutpoints(0.5).fit(lines)
>>> clustered = HDBSCAN(0.15).fit(cutpoints)
>>> centres = (SplitLabels() + Centroids() + Stack()).fit(clustered)

Once the processing steps have been tuned (see the Tutorials), you can chain
all filters into a pept.Pipeline for efficient, parallel execution:

>>> pipeline = (
>>> Cutpoints(0.5) +
>>> HDBSCAN(0.15) +
>>> SplitLabels() + Centroids() + Stack()
>>>)
>>> centres = pipeline.fit(lines)

If you would like to implement a PEPT algorithm, all you need to do is to
subclass a pept.base.Filter and define the method .fit_sample(sample) -
and you get parallel execution and pipeline chaining for free!

>>> import pept
>>>
>>> class NewAlgorithm(pept.base.LineDataFilter):
>>> def __init__(self, setting1, setting2 = None):
>>> self.setting1 = setting1
>>> self.setting2 = setting2
>>>
>>> def fit_sample(self, sample: pept.LineData):
>>> processed_points = ...
>>> return pept.PointData(processed_points)

Tracking Optimisation

	pept.tracking.Debug([verbose, max_samples])

	Print types and statistics about the objects being processed in a pept.Pipeline.

	pept.tracking.OptimizeWindow(ideal_elems[, ...])

	Automatically determine optimum adaptive time window to have an ideal number of elements per sample.

General-Purpose Transformers

	pept.tracking.Stack([sample_size, overlap])

	Stack iterables - for example a list[pept.LineData] into a single pept.LineData, a list[list] into a flattened list.

	pept.tracking.SplitLabels([remove_labels, ...])

	Split a sample of data into unique label values, optionally removing noise and extracting _lines attributes.

	pept.tracking.SplitAll

	alias of GroupBy

	pept.tracking.GroupBy(column)

	Stack all samples and split them into a list according to a named / numeric column index.

	pept.tracking.Centroids([error, ...])

	Compute the geometric centroids of a list of samples of points.

	pept.tracking.LinesCentroids([remove, ...])

	Compute the minimum distance point of some pept.LineData while iteratively removing a fraction of the furthest lines.

	pept.tracking.Condition(*conditions)

	Select only data satisfying multiple conditions, given as a string, a function or list thereof; e.g.

	pept.tracking.SamplesCondition(*conditions)

	Select only samples satisfying multiple conditions, given as a string, a function or list thereof; e.g.

	pept.tracking.Remove(*columns)

	Remove columns (either column names or indices) from pept.LineData or pept.PointData.

	pept.tracking.Swap(*swaps[, inplace])

	Swap two columns in a LineData or PointData.

Space Transformers

	pept.tracking.Voxelize(number_of_voxels[, ...])

	Asynchronously voxelize samples of lines from a pept.LineData.

	pept.tracking.Interpolate(timestep[, ...])

	Interpolate between data points at a fixed sampling rate; useful for Eulerian fields computation.

	pept.tracking.Reorient([dimensions, basis, ...])

	Rotate a dataset such that it is oriented according to its principal axes.

	pept.tracking.OutOfViewFilter([max_time, k])

	Remove tracer locations that are sparse in time - ie the k-th nearest detection is later than max_time.

	pept.tracking.RemoveStatic(time_window, ...)

	Remove parts of a PointData where the tracer remains static.

Tracer Locating Algorithms

	pept.tracking.BirminghamMethod([fopt, get_used])

	The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.

	pept.tracking.Cutpoints(max_distance[, ...])

	Transform LoRs (a pept.LineData instance) into cutpoints (a pept.PointData instance) for clustering, in parallel.

	pept.tracking.Minpoints(num_lines, max_distance)

	Transform LoRs (a pept.LineData instance) into minpoints (a pept.PointData instance) for clustering, in parallel.

	pept.tracking.HDBSCAN(true_fraction[, ...])

	Use HDBSCAN to cluster some pept.PointData and append a cluster label to each point.

	pept.tracking.FPI([w, r, lld_counts, verbose])

	FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers in fast and noisy environments.

Trajectory Separation Algorithms

	pept.tracking.Segregate(window, cut_distance)

	Segregate the intertwined points from multiple trajectories into individual paths.

	pept.tracking.Reconnect(tmax, dmax[, ...])

	Best-fit trajectory segment reconstruction based on time, distance and arbitrary tracer signatures.

Time Of Flight Algorithms

	pept.tracking.TimeOfFlight([...])

	Compute the positron annihilation locations of each LoR as given by the Time Of Flight (ToF) data of the two LoR timestamps.

	pept.tracking.CutpointsToF([max_distance, ...])

	Compute cutpoints from all pairs of lines whose Time Of Flight-predicted locations are closer than max_distance.

	pept.tracking.GaussianDensity([sigma])

	Append weights according to the Gaussian distribution that best fits the samples of points.

Post Processing Algorithms

	pept.tracking.Velocity(window[, degree, ...])

	Append the dimension-wise or absolute velocity to samples of points using a 2D fitted polynomial in a rolling window mode.

pept.tracking.Debug

	
class pept.tracking.Debug(verbose=5, max_samples=10)

	Bases: Reducer

Print types and statistics about the objects being processed in a
pept.Pipeline.

Reducer signature:

 PointData -> Debug.fit -> PointData
 LineData -> Debug.fit -> LineData
list[PointData] -> Debug.fit -> list[PointData]
 list[LineData] -> Debug.fit -> list[LineData]
 np.ndarray -> Debug.fit -> np.ndarray
 Any -> Debug.fit -> Any

This is a reducer, so it will collect all samples processed up to the
point of use, print them, and return them unchanged.

New in pept-0.5.1

Examples

A Debug is normally added in a Pipeline:

>>> import pept
>>> import pept.tracking as pt
>>>
>>> pept.Pipeline([
>>> # First pass of clustering
>>> pt.Cutpoints(max_distance = 0.2),
>>> pt.HDBSCAN(true_fraction = 0.15),
>>> pt.SplitLabels() + pt.Centroids(cluster_size = True, error = True),
>>>
>>> pt.Debug(),
>>> pt.Stack(),
>>>])

	
__init__(verbose=5, max_samples=10)

	

Methods

	__init__([verbose, max_samples])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
fit(samples)

	

pept.tracking.OptimizeWindow

	
class pept.tracking.OptimizeWindow(ideal_elems, overlap=0.0, low=0.3, high=3)

	Bases: Reducer

Automatically determine optimum adaptive time window to have an ideal
number of elements per sample.

Reducer signature:

 LineData -> OptimizeWindow.fit -> LineData
 list[LineData] -> OptimizeWindow.fit -> LineData
 PointData -> OptimizeWindow.fit -> PointData
list[PointData] -> OptimizeWindow.fit -> PointData
 numpy.ndarray -> OptimizeWindow.fit -> PointData

The adaptive time window approach combines the advantages of fixed sample
sizes and time windowing:

	Time windows are robust to tracers moving in and out of the field of
view, as they simply ignore the time slices where almost no LoRs are
recorded.

	Fixed sample sizes effectively adapt their spatio-temporal resolution,
allowing for higher accuracy when tracers are passing through more
active scanner regions.

All samples with more than ideal_elems are shortened, such that time
windows are shrinked when the tracer activity permits. There exists an
ideal time window such that most samples will have roughly ideal_elems,
with a few higher activity ones that are shortened; OptimizeWindow
finds this ideal time window for pept.AdaptiveWindow.

New in pept-0.5.1

Examples

Find an adaptive time window that is ideal for about 200 LoRs per sample:

>>> import pept
>>> import pept.tracking as pt
>>> lors = pept.LineData(...)
>>> lors = pt.OptimizeWindow(ideal_elems = 200).fit(lors)

OptimizeWindow can be used at the start of a pipeline; an optional
overlap parameter can be used to define an overlap as a ratio to the
ideal time window found. For example, if the ideal time window found is
100 ms, an overlap of 0.5 will result in an overlapping time interval of
50 ms:

>>> pipeline = pept.Pipeline([
>>> pt.OptimizeWindow(200, overlap = 0.5),
>>> pt.BirminghamMethod(0.5),
>>> pt.Stack(),
>>>])

	
__init__(ideal_elems, overlap=0.0, low=0.3, high=3)

	

Methods

	__init__(ideal_elems[, overlap, low, high])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	evaluate(window)

	

	fit(data)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(data)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
evaluate(window)

	

pept.tracking.Stack

	
class pept.tracking.Stack(sample_size=None, overlap=None)

	Bases: Reducer

Stack iterables - for example a list[pept.LineData] into a single
pept.LineData, a list[list] into a flattened list.

Reducer signature:

 list[LineData] -> Stack.fit -> LineData
 list[PointData] -> Stack.fit -> PointData

 list[list[Any]] -> Stack.fit -> list[Any]
list[numpy.ndarray] -> Stack.fit -> numpy.ndarray

 other -> Stack.fit -> other

Can optionally set a given sample_size and overlap. This is useful
when collecting a list of processed samples back into a single object.

	
__init__(sample_size=None, overlap=None)

	

Methods

	__init__([sample_size, overlap])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitLabels

	
class pept.tracking.SplitLabels(remove_labels=True, extract_lines=False, noise=False)

	Bases: Filter

Split a sample of data into unique label values, optionally removing
noise and extracting _lines attributes.

Filter signature:

`extract_lines` = False (default)
 LineData -> SplitLabels.fit_sample -> list[LineData]
PointData -> SplitLabels.fit_sample -> list[PointData]

`extract_lines` = True and PointData.attrs["_lines"] exists
PointData -> SplitLabels.fit_sample -> list[LineData]

The sample of data must have a column named exactly “label”. If
remove_label = True (default), the “label” column is removed.

	
__init__(remove_labels=True, extract_lines=False, noise=False)

	

Methods

	__init__([remove_labels, extract_lines, noise])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(sample: IterableSamples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitAll

	
pept.tracking.SplitAll

	alias of GroupBy

pept.tracking.GroupBy

	
class pept.tracking.GroupBy(column)

	Bases: Reducer

Stack all samples and split them into a list according to a named /
numeric column index.

Reducer signature:

 LineData -> SplitAll.fit -> list[LineData]
 list[LineData] -> SplitAll.fit -> list[LineData]

 PointData -> SplitAll.fit -> list[PointData]
 list[PointData] -> SplitAll.fit -> list[PointData]

 numpy.ndarray -> SplitAll.fit -> list[numpy.ndarray]
list[numpy.ndarray] -> SplitAll.fit -> list[numpy.ndarray]

If using a LineData / PointData, you can use a columns name as a string,
e.g. SplitAll("label") or a number SplitAll(4). If using a NumPy
array, only numeric indices are accepted.

	
__init__(column)

	

Methods

	__init__(column)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Centroids

	
class pept.tracking.Centroids(error=False, cluster_size=False, weight=True)

	Bases: Filter

Compute the geometric centroids of a list of samples of points.

Filter signature:

 PointData -> Centroids.fit_sample -> PointData
list[PointData] -> Centroids.fit_sample -> PointData
 numpy.ndarray -> Centroids.fit_sample -> PointData

This filter can be used right after pept.tracking.SplitLabels, e.g.:

>>> (SplitLabels() + Centroids()).fit(points)

If error = True, append a measure of error on the computed centroid as
the standard deviation in distances from centroid to all points. It is
saved in an extra column “error”.

If cluster_size = True, append the number of points used for each
centroid in an extra column “cluster_size” - unless weight = True, in
which case it is the sum of weights.

If weight = True and there is a column “weight” in the PointData, compute
weighted centroids and standard deviations (if error = True) and the sum
of weights (if cluster_size = True). The “weight” column is removed in
the output centroid.

	
__init__(error=False, cluster_size=False, weight=True)

	

Methods

	__init__([error, cluster_size, weight])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(points)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(points)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.LinesCentroids

	
class pept.tracking.LinesCentroids(remove=0.1, iterations=6)

	Bases: Filter

Compute the minimum distance point of some pept.LineData while
iteratively removing a fraction of the furthest lines.

Filter signature:

list[LineData] -> LinesCentroids.fit_sample -> PointData
 LineData -> LinesCentroids.fit_sample -> PointData
 numpy.ndarray -> LinesCentroids.fit_sample -> PointData

The code below is adapted from the PEPT-EM algorithm developed by Antoine
Renaud and Sam Manger.

	
__init__(remove=0.1, iterations=6)

	

Methods

	__init__([remove, iterations])

	

	centroid(lors)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	distance_matrix(x, lors)

	

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(lines)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	predict(lines)

	

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
static centroid(lors)

	

	
static distance_matrix(x, lors)

	

	
predict(lines)

	

	
fit_sample(lines)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Condition

	
class pept.tracking.Condition(*conditions)

	Bases: Filter

Select only data satisfying multiple conditions, given as a string, a
function or list thereof; e.g. Condition("error < 15") selects all
points whose “error” column value is smaller than 15.

Filter signature:

PointData -> Condition.fit_sample -> PointData
 LineData -> Condition.fit_sample -> LineData

In the simplest case, a column name is specified, plus a comparison, e.g.
Condition("error < 15, y > 100"); multiple conditions may be
concatenated using a comma.

More complex conditions - where the column name is not the first operand -
can be constructed using single quotes, e.g. using NumPy functions in
Condition("np.isfinite('x')") to filter out NaNs and Infs. Quotes can
be used to index columns too: Condition("'0' < 150") selects all rows
whose first column is smaller than 150.

Generally, you can use any function returning a boolean mask, either as a
string of code Condition("np.isclose('x', 3)") or a user-defined
function receiving a NumPy array Condition(lambda x: x[:, 0] < 10).

Finally, multiple such conditions may be supplied separately:
Condition(lambda x: x[:, -1] > 10, "'t' < 50").

	
__init__(*conditions)

	

Methods

	__init__(*conditions)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	conditions

	

	
property conditions

	

	
fit_sample(sample: IterableSamples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SamplesCondition

	
class pept.tracking.SamplesCondition(*conditions)

	Bases: Reducer

Select only samples satisfying multiple conditions, given as a string,
a function or list thereof; e.g. Condition("sample_size > 30") selects
all samples with a sample size larger than 30.

Filter signature:

PointData -> SamplesCondition.fit_sample -> PointData
 LineData -> SamplesCondition.fit_sample -> LineData

This is different to a Condition, which selects individual points; for
SamplesCondition, each sample will be passed through the conditions.

Conditions can be defined as Python code using the following variables:

	sample - this is the full PointData or LineData, e.g. only keep samples
with more than 30 points with “len(sample.points) > 30”.

	data - this is the raw NumPy array of data wrapped by a PointData or
LineData, e.g. only keep samples which have all X coordinates beyond 100
with SamplesCondition(“np.all(data[:, 1] > 100)”).

	sample_size - this is a shorthand for the number of data points, e.g.
only keep samples with more than 30 points with “sample_size > 30”.

Conditions can also be Python functions:

>>> def high_velocity_filter(sample):
>>> return np.all(sample["v"] > 5)

>>> from pept.tracking import SamplesCondition
>>> filtered = SamplesCondition(high_velocity_filter).fit(point_data)

	
__init__(*conditions)

	

Methods

	__init__(*conditions)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	conditions

	

	
property conditions

	

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Remove

	
class pept.tracking.Remove(*columns)

	Bases: Filter

Remove columns (either column names or indices) from pept.LineData or
pept.PointData.

Filter signature:

 pept.LineData -> Remove.fit_sample -> pept.LineData
pept.PointData -> Remove.fit_sample -> pept.PointData

Examples

To remove a single column named “line_index”:

>>> import pept
>>> from pept.tracking import *
>>> points = pept.PointData(...) # Some dummy data

>>> rem = Remove("line_index")
>>> points_without = rem.fit_sample(points)

Remove all columns starting with “line_index” using a glob operator (*):

>>> points_without = Remove("line_index*").fit_sample(points)

Remove the first column based on its index:

>>> points_without = Remove(0).fit_sample(points)

Finally, multiple removals may be chained into a list:

>>> points_without = Remove(["line_index*", -1]).fit_sample(points)

	
__init__(*columns)

	

Methods

	__init__(*columns)

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	columns

	

	
property columns

	

	
fit_sample(sample: IterableSamples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Swap

	
class pept.tracking.Swap(*swaps, inplace=True)

	Bases: Filter

Swap two columns in a LineData or PointData.

Filter signature:

 LineData -> Swap.fit_sample -> LineData
PointData -> Swap.fit_sample -> PointData

For example, swap the Y and Z axes: Swap("y, z").fit_sample(points).
Add multiple swaps as separate arguments: Swap("y, z", "label, x").

You can also swap columns at numerical indices by single-quoting them:
Swap("'0', '1'").

New in pept-0.4.3

	
__init__(*swaps, inplace=True)

	

Methods

	__init__(*swaps[, inplace])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	swaps

	

	
property swaps

	

	
fit_sample(sample: IterableSamples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Voxelize

	
class pept.tracking.Voxelize(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)

	Bases: LineDataFilter

Asynchronously voxelize samples of lines from a pept.LineData.

Filter signature:

LineData -> Voxelize.fit_sample -> PointData

This filter is much more memory-efficient than voxelizing all samples of
LoRs at once - which often overflows the available memory. Most often this
is used alongside voxel-based tracking algorithms, e.g.
pept.tracking.FPI:

>>> from pept.tracking import *
>>> pipeline = pept.Pipeline([
>>> Voxelize((50, 50, 50)),
>>> FPI(3, 0.4),
>>> Stack(),
>>>])

	Parameters

	
	number_of_voxels3-tuple
	A tuple-like containing exactly three integers specifying the number of
voxels to be used in each dimension.

	xlim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max]. If undefined, it is
inferred from the bounding box of each sample of lines.

	ylim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max]. If undefined, it is
inferred from the bounding box of each sample of lines.

	zlim(2,) list [https://docs.python.org/3/library/stdtypes.html#list][float [https://docs.python.org/3/library/functions.html#float]], optional
	The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max]. If undefined, it is
inferred from the bounding box of each sample of lines.

	set_lims(N, 7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.LineData, optional
	If defined, set the system limits upon creating the class to the
bounding box of the lines in set_lims.

	
__init__(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)

	

Methods

	__init__(number_of_voxels[, xlim, ylim, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample_lines)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	set_lims(lines[, set_xlim, set_ylim, set_zlim])

	

Attributes

	number_of_voxels

	

	xlim

	

	ylim

	

	zlim

	

	
set_lims(lines, set_xlim=True, set_ylim=True, set_zlim=True)

	

	
property number_of_voxels

	

	
property xlim

	

	
property ylim

	

	
property zlim

	

	
fit_sample(sample_lines)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Interpolate

	
class pept.tracking.Interpolate(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>, **kwargs)

	Bases: PointDataFilter

Interpolate between data points at a fixed sampling rate; useful for
Eulerian fields computation.

Filter signature:

PointData -> Interpolate.fit_sample -> PointData

By default, the linear interpolator scipy.interpolate.interp1d is used.
You can specify a different interpolator and keyword arguments to send it.
E.g. nearest-neighbour interpolation: Interpolate(1., kind = "nearest")
or cubic interpolation: Interpolate(1., kind = "cubic").

All data columns except timestamps are interpolated.

	
__init__(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>, **kwargs)

	

Methods

	__init__(timestep[, interpolator])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(point_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(sample)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(point_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Reorient

	
class pept.tracking.Reorient(dimensions='xyz', basis=None, origin=None)

	Bases: Reducer

Rotate a dataset such that it is oriented according to its principal
axes.

Reducer signature:

 PointData -> Reorient.fit -> PointData
list[PointData] -> Reorient.fit -> PointData
 np.ndarray -> Reorient.fit -> PointData

By default, this reducer reorients the points such that the axis along
which it is most spread out (e.g. lengthwise in a pipe) becomes the X-axis.
The input argument dimensions sets this - the default “xyz” can be
changed to e.g. “zyx” so that the longest data axis becomes the Z-axis.

The reducer also sets three attributes on the returned PointData:
- origin: the origin relative to which the initial data was rotated.
- basis: the principal components - or change of basis 3x3 matrix.
- eigenvalues: how spread out the data is in each initial dimension.

If you’d like to reorient a second dataset to the same basis as a first
one, set the basis and origin arguments.

New in pept-0.5.0

Examples

Reorient a dataset by aligning the longest principal component (e.g.
lengthwise in a pipe) to the X-axis:

>>> import pept.tracking as pt
>>> data = PointData(...)
>>> reoriented = pt.Reorient().fit(data)

Reorient it such that the longest principal component (e.g. vertical in a
mixer) becomes the Z-axis:

>>> reoriented = pt.Reorient("zyx").fit(data)

Reorient a second dataset to the same orientation basis as the first one:

>>> reoriented2 = pt.Reorient(
>>> basis = reoriented.attrs["basis"],
>>> origin = reoriented.attrs["origin"],
>>>).fit(other_data)

	
__init__(dimensions='xyz', basis=None, origin=None)

	

Methods

	__init__([dimensions, basis, origin])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.OutOfViewFilter

	
class pept.tracking.OutOfViewFilter(max_time=200.0, k=5)

	Bases: Reducer

Remove tracer locations that are sparse in time - ie the k-th
nearest detection is later than max_time.

Reducer signature:

 PointData -> OutOfViewFilter.fit -> PointData
list[PointData] -> OutOfViewFilter.fit -> PointData
 numpy.ndarray -> OutOfViewFilter.fit -> PointData

This reducer (i.e. stacks all data samples, then processes it) is useful
when the tracer goes out of the PEPT scanners and there are a few sparse
noisy detections to remove.

New in pept-0.5.1

Examples

Select only tracer locations whose next detection is within 200 ms.

>>> import pept
>>> import pept.tracking as pt
>>> trajectories = pept.PointData(...)
>>> # Only keep points whose next detection is within 200 ms
>>> inview = pt.OutOfViewFilter(max_time = 200.).fit(trajectories)

	
__init__(max_time=200.0, k=5)

	

Methods

	__init__([max_time, k])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.RemoveStatic

	
class pept.tracking.RemoveStatic(time_window, max_distance, quantile=0.9)

	Bases: Reducer

Remove parts of a PointData where the tracer remains static.

Reducer signature:

 PointData -> OutOfViewFilter.fit -> PointData
list[PointData] -> OutOfViewFilter.fit -> PointData
 numpy.ndarray -> OutOfViewFilter.fit -> PointData

If there is a time_window in which the tracer does not move more than
max_distance, it is removed.

The distances moved are computed relative to the average position within
each time window; to make the reducer more robust to noise, the given
distance quantile is compared to max_distance.

New in pept-0.5.2

Examples

Given some trajectories from e.g. a long experiment where the particle
may have got stuck at some points, we can remove the static windows with:

import pept
import pept.tracking as pt

trajectories = ...

Remove positions that spent more than 2 seconds without moving more
than 20 mm
trajectories_nonstatic = RemoveStatic(
 time_window = 2000,
 max_distance = 20,
).fit(trajectories)

This reducer, like the rest in pept.tracking, can be chained into a
pipeline, for example:

import pept
import pept.tracking as pt

pipeline = pept.Pipeline([
 # Remove positions with high errors
 pt.Condition("error < 20"),

 # Remove tracers that got stuck
 pt.RemoveStatic(time_window = 2000, max_distance = 20),

 # Trajectory separation
 pt.Segregate(window = 20, cut_distance = 15),

 # Group each trajectory into its own sample, then stack them
 pt.GroupBy("label"),
 pt.Stack(),
])

	
__init__(time_window, max_distance, quantile=0.9)

	

Methods

	__init__(time_window, max_distance[, quantile])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.BirminghamMethod

	
class pept.tracking.BirminghamMethod(fopt=0.5, get_used=False)

	Bases: LineDataFilter

The Birmingham Method is an efficient, analytical technique for tracking
tracers using the LoRs from PEPT data.

Two main methods are provided: fit_sample for tracking a single numpy
array of LoRs (i.e. a single sample) and fit which tracks all the samples
encapsulated in a pept.LineData class in parallel.

For the given sample of LoRs (a numpy.ndarray), this function minimises
the distance between all of the LoRs, rejecting a fraction of lines that
lie furthest away from the calculated distance. The process is repeated
iteratively until a specified fraction (fopt) of the original subset of
LORs remains.

This class is a wrapper around the birmingham_method subroutine
(implemented in C), providing tools for asynchronously tracking samples of
LoRs. It can return PointData classes which can be easily manipulated and
visualised.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	pept.utilities.read_csv
	Fast CSV file reading into numpy arrays.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

	pept.scanners.ParallelScreens
	Initialise a pept.LineData instance from parallel screens PEPT detectors.

Examples

A typical workflow would involve reading LoRs from a file, instantiating a
BirminghamMethod class, tracking the tracer locations from the LoRs, and
plotting them.

>>> import pept
>>> from pept.tracking.birmingham_method import BirminghamMethod

>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> bham = BirminghamMethod()
>>> locations = bham.fit(lors) # this is a `pept.PointData` instance

>>> grapher = PlotlyGrapher()
>>> grapher.add_points(locations)
>>> grapher.show()

	Attributes

	
	foptfloat [https://docs.python.org/3/library/functions.html#float]
	Floating-point number between 0 and 1, representing the target fraction
of LoRs in a sample used to locate a tracer.

	get_usedbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If True, attach an attribute ._lines to the output PointData
containing the sample of LoRs used (+ a column used).

	
__init__(fopt=0.5, get_used=False)

	BirminghamMethod class constructor.

	foptfloat, default 0.5
	Float number between 0 and 1, representing the fraction of
remaining LORs in a sample used to locate the particle.

	verbosebool, default False
	Print extra information when initialising this class.

Methods

	__init__([fopt, get_used])

	BirminghamMethod class constructor.

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	Use the Birmingham method to track a tracer location from a numpy array (i.e.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(sample)

	Use the Birmingham method to track a tracer location from a numpy
array (i.e. one sample) of LoRs.

For the given sample of LoRs (a numpy.ndarray), this function
minimises the distance between all of the LoRs, rejecting a fraction of
lines that lie furthest away from the calculated distance. The process
is repeated iteratively until a specified fraction (fopt) of the
original subset of LORs remains.

	Parameters

	
	sample(N, M>=7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The sample of LORs that will be clustered. Each LoR is expressed as
a timestamps and a line defined by two points; the data columns are
then [time, x1, y1, z1, x2, y2, z2, extra…].

	Returns

	
	locationsnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.PointData
	The tracked locations found.

	usednumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	If get_used is true, then also return a boolean mask of the LoRs
used to compute the tracer location - that is, a vector of the same
length as sample, containing 1 for the rows that were used, and 0
otherwise.
[Used for multi-particle tracking, not implemented yet].

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If sample is not a numpy array of shape (N, M), where M >= 7.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Cutpoints

	
class pept.tracking.Cutpoints(max_distance, cutoffs=None, append_indices=False)

	Bases: LineDataFilter

Transform LoRs (a pept.LineData instance) into cutpoints (a
pept.PointData instance) for clustering, in parallel.

Under typical usage, the Cutpoints class is initialised with a
pept.LineData instance, automatically calculating the cutpoints from the
samples of lines. The Cutpoints class inherits from pept.PointData,
such that once the cutpoints have been computed, all the methods from the
parent class pept.PointData can be used on them (such as visualisation
functionality).

For more control over the operations, pept.tracking.peptml.find_cutpoints
can be used - it receives a generic numpy array of LoRs (one ‘sample’) and
returns a numpy array of cutpoints.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.tracking.HDBSCAN
	Efficient, parallel HDBSCAN-based clustering of (cut)points.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

Examples

Compute the cutpoints for a LineData instance between lines that are less
than 0.1 apart:

>>> line_data = pept.LineData(example_data)
>>> cutpts = peptml.Cutpoints(0.1).fit(line_data)

Compute the cutpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.Cutpoints(0.1).fit_sample(sample)

	Attributes

	
	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum distance between any two lines for their cutpoint to be
considered. A good starting value would be 0.1 mm for small tracers
and/or clean data, or 0.2 mm for larger tracers and/or noisy data.

	cutoffslist-like of length 6
	A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the
cutpoints which fall within these cutoff distances are considered. The
default is None, in which case they are automatically computed using
pept.tracking.peptml.get_cutoffs.

	
__init__(max_distance, cutoffs=None, append_indices=False)

	Cutpoints class constructor.

	Parameters

	
	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum distance between any two lines for their cutpoint to be
considered. A good starting value would be 0.1 mm for small tracers
and/or clean data, or 0.5 mm for larger tracers and/or noisy data.

	cutoffslist-like of length 6, optional
	A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the
cutpoints which fall within these cutoff distances are considered.
The default is None, in which case they are automatically computed
using pept.tracking.peptml.get_cutoffs.

	append_indicesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If set to True, the indices of the individual LoRs that were used
to compute each cutpoint are also appended to the returned array.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If cutoffs is not a one-dimensional array with values formatted
as [min_x, max_x, min_y, max_y, min_z, max_z].

Methods

	__init__(max_distance[, cutoffs, append_indices])

	Cutpoints class constructor.

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample_lines)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	append_indices

	

	cutoffs

	

	max_distance

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property max_distance

	

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property cutoffs

	

	
property append_indices

	

	
fit_sample(sample_lines)

	

pept.tracking.Minpoints

	
class pept.tracking.Minpoints(num_lines, max_distance, cutoffs=None, append_indices=False)

	Bases: LineDataFilter

Transform LoRs (a pept.LineData instance) into minpoints (a
pept.PointData instance) for clustering, in parallel.

Given a sample of lines, the minpoints are the minimum distance points
(MDPs) for every possible combination of num_lines lines that satisfy
the following conditions:

	Are within the cutoffs.

	Are closer to all the constituent LoRs than max_distance.

Under typical usage, the Minpoints class is initialised with a
pept.LineData instance, automatically calculating the minpoints from the
samples of lines. The Minpoints class inherits from pept.PointData,
such that once the cutpoints have been computed, all the methods from the
parent class pept.PointData can be used on them (such as visualisation
functionality).

For more control over the operations, pept.tracking.peptml.find_minpoints
can be used - it receives a generic numpy array of LoRs (one ‘sample’) and
returns a numpy array of cutpoints.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.tracking.peptml.HDBSCANClusterer
	Efficient, parallel HDBSCAN-based clustering of cutpoints.

	pept.scanners.ParallelScreens
	Read in and initialise a pept.LineData instance from parallel screens PET/PEPT detectors.

	pept.utilities.read_csv
	Fast CSV file reading into numpy arrays.

Examples

Compute the minpoints for a LineData instance for all triplets of lines
that are less than 0.1 from those lines:

>>> line_data = pept.LineData(example_data)
>>> minpts = peptml.Minpoints(line_data, 3, 0.1)

Compute the minpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.find_minpoints(sample, 3, 0.1)

	Attributes

	
	line_datainstance of pept.LineData
	The LoRs for which the cutpoints will be computed. It must be an
instance of pept.LineData.

	num_linesint [https://docs.python.org/3/library/functions.html#int]
	The number of lines in each combination of LoRs used to compute the
MDP. This function considers every combination of num_lines from the
input sample_lines. It must be smaller or equal to the number of
input lines sample_lines.

	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum allowed distance between an MDP and its constituent lines.
If any distance from the MDP to one of its lines is larger than
max_distance, the MDP is thrown away. A good starting value would be
0.1 mm for small tracers and/or clean data, or 0.2 mm for larger
tracers and/or noisy data.

	cutoffslist-like of length 6
	A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the
minpoints which fall within these cutoff distances are considered. The
default is None, in which case they are automatically computed using
pept.tracking.peptml.get_cutoffs.

	
__init__(num_lines, max_distance, cutoffs=None, append_indices=False)

	Minpoints class constructor.

	Parameters

	
	num_linesint [https://docs.python.org/3/library/functions.html#int]
	The number of lines in each combination of LoRs used to compute the
MDP. This function considers every combination of num_lines from
the input sample_lines. It must be smaller or equal to the number
of input lines sample_lines.

	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum allowed distance between an MDP and its constituent
lines. If any distance from the MDP to one of its lines is larger
than max_distance, the MDP is thrown away. A good starting value
would be 0.1 mm for small tracers and/or clean data, or 0.2 mm for
larger tracers and/or noisy data.

	cutoffslist-like of length 6, optional
	A list (or equivalent) of the cutoff distances for every axis,
formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the
minpoints which fall within these cutoff distances are considered.
The default is None, in which case they are automatically computed
using pept.tracking.peptml.get_cutoffs.

	append_indicesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	If set to True, the indices of the individual LoRs that were used
to compute each minpoint are also appended to the returned array.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]
	If line_data is not an instance of pept.LineData.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If 2 <= num_lines <= len(sample_lines) is not satisfied.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If cutoffs is not a one-dimensional array with values formatted
as [min_x, max_x, min_y, max_y, min_z, max_z].

Methods

	__init__(num_lines, max_distance[, cutoffs, ...])

	Minpoints class constructor.

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample_lines)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	append_indices

	

	cutoffs

	

	max_distance

	

	num_lines

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property num_lines

	

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
property max_distance

	

	
property cutoffs

	

	
property append_indices

	

	
fit_sample(sample_lines)

	

pept.tracking.HDBSCAN

	
class pept.tracking.HDBSCAN(true_fraction, max_tracers=1)

	Bases: PointDataFilter

Use HDBSCAN to cluster some pept.PointData and append a cluster
label to each point.

Filter signature:

PointData -> HDBSCAN.fit_sample -> PointData

The only free parameter to select is the true_fraction, a relative
measure of the ratio of inliers to outliers. A noisy sample - e.g. first
pass of clustering of cutpoints - may need a value of 0.15. A cleaned up
dataset - e.g. a second pass of clustering - can work with 0.6.

You can also set the maximum number of tracers visible at any one time in
the system in max_tracers (default 1). This is simply an inverse
scaling factor, but the true_fraction is quite robust with varying
numbers of tracers.

	
__init__(true_fraction, max_tracers=1)

	

Methods

	__init__(true_fraction[, max_tracers])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(point_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample_points)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(point_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
fit_sample(sample_points)

	

pept.tracking.FPI

	
class pept.tracking.FPI(w=3.0, r=0.4, lld_counts=0.0, verbose=False)

	Bases: VoxelsFilter

FPI is a modern voxel-based tracer-location algorithm that can reliably
work with unknown numbers of tracers in fast and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe
flows at the Virginia Commonwealth University. If you use this algorithm in
your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method
for positron emission particle tracking with multiple tracers. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment. 2017 Jan 21;
843:22-8.

Permission was granted by Dr. Cody Wiggins in March 2021 to publish his
code in the pept library under the GNU v3.0 license.

Two main methods are provided: fit_sample for tracking a single voxel
space (i.e. a single pept.Voxels) and fit which tracks all the samples
encapsulated in a pept.VoxelData class in parallel.

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

	pept.utilities.read_csv
	Fast CSV file reading into numpy arrays.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

Examples

A typical workflow would involve reading LoRs from a file, creating a lazy
VoxelData voxellised representation, instantiating an FPI class,
tracking the tracer locations from the LoRs, and plotting them.

>>> import pept
>>>
>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> voxels = pept.tracking.Voxelize((50, 50, 50)).fit(lors)
>>>
>>> fpi = pept.tracking.FPI(w = 3, r = 0.4)
>>> positions = fpi.fit(voxels) # this is a `pept.PointData` instance

A much more efficient approach would be to create a pept.Pipeline
containing a voxelization step and then FPI:

>>> from pept.tracking import *
>>>
>>> pipeline = Voxelize((50, 50, 50)) + FPI() + Stack()
>>> positions = pipeline.fit(lors)

Finally, plotting results:

>>> from pept.plots import PlotlyGrapher
>>>
>>> grapher = PlotlyGrapher()
>>> grapher.add_points(positions)
>>> grapher.show()

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_timeseries(positions).show()

	Attributes

	
	wdouble
	Search range to be used in local maxima calculation. Typical values for
w are 2 - 5 (lower number for more particles or smaller particle
separation).

	rdouble
	Fraction of peak value used as threshold. Typical values for r are
usually between 0.3 and 0.6 (lower for more particles, higher for
greater background noise)

	lld_countsdouble, default 0
	A secondary lld to prevent assigning local maxima to voxels with very
low values. The parameter lld_counts is not used much in practice -
for most cases, it can be set to zero.

	
__init__(w=3.0, r=0.4, lld_counts=0.0, verbose=False)

	FPI class constructor.

	Parameters

	
	wdouble
	Search range to be used in local maxima calculation. Typical values
for w are 2 - 5 (lower number for more particles or smaller
particle separation).

	rdouble
	Fraction of peak value used as threshold. Typical values for r are
usually between 0.3 and 0.6 (lower for more particles, higher for
greater background noise)

	lld_countsdouble, default 0
	A secondary lld to prevent assigning local maxima to voxels with
very low values. The parameter lld_counts is not used much in
practice - for most cases, it can be set to zero.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default False [https://docs.python.org/3/library/constants.html#False]
	Show extra information on class instantiation.

Methods

	__init__([w, r, lld_counts, verbose])

	FPI class constructor.

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(voxels[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(voxels)

	Use the FPI algorithm to locate a tracer from a single voxellised space (i.e.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(voxels: Voxels)

	Use the FPI algorithm to locate a tracer from a single voxellised
space (i.e. from one sample of LoRs).

A sample of LoRs can be voxellised using the pept.Voxels.from_lines
method before calling this function.

	Parameters

	
	voxelspept.Voxels
	A single voxellised space (i.e. from a single sample of LoRs) for
which the tracers’ locations will be found using the FPI method.

	Returns

	
	locationsnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.PointData
	The tracked locations found; if as_array is True, they are
returned as a NumPy array with columns [time, x, y, z, error_x,
error_y, error_z]. If as_array is False, the points are returned
in a pept.PointData for ease of visualisation.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]
	If voxels is not an instance of pept.Voxels (or subclass
thereof).

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(voxels, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Segregate

	
class pept.tracking.Segregate(window, cut_distance, min_trajectory_size=5, max_time_interval=1.7976931348623157e+308)

	Bases: Reducer

Segregate the intertwined points from multiple trajectories into
individual paths.

Reducer signature:

 pept.PointData -> Segregate.fit -> pept.PointData
list[pept.PointData] -> Segregate.fit -> pept.PointData
 numpy.ndarray -> Segregate.fit -> pept.PointData

The points in point_data (a numpy array or pept.PointData) are used
to construct a minimum spanning tree in which every point can only be
connected to points_window points around it - this “window” refers to
the points in the initial data array, sorted based on the time column;
therefore, only points within a certain timeframe can be connected. All
edges (or “connections”) in the minimum spanning tree that are larger
than trajectory_cut_distance are removed (or “cut”) and the remaining
connected “clusters” are deemed individual trajectories if they contain
more than min_trajectory_size points.

The trajectory indices (or labels) are appended to point_data. That
is, for each data point (i.e. row) in point_data, a label will be
appended starting from 0 for the corresponding trajectory; a label of
-1 represents noise. If point_data is a numpy array, a new numpy
array is returned; if it is a pept.PointData instance, a new instance
is returned.

This function uses single linkage clustering with a custom metric for
spatio-temporal data to segregate trajectory points. The single linkage
clustering was optimised for this use-case: points are only connected
if they are within a certain points_window in the time-sorted input
array. Sparse matrices are also used for minimising the memory
footprint.

See also

	Reconnect
	Connect segregated trajectories based on tracer signatures.

	PlotlyGrapher
	Easy, publication-ready plotting of PEPT-oriented data.

Examples

A typical workflow would involve transforming LoRs into points using some
tracking algorithm. These points include all tracers moving through the
system, being intertwined (e.g. for two tracers A and B, the point_data
array might have two entries for A, followed by three entries for B, then
one entry for A, etc.). They can be segregated based on position alone
using this function; take for example two tracers that go downwards (below,
‘x’ is the position, and in parens is the array index at which that point
is found).

`points`, numpy.ndarray, shape (10, 4), columns [time, x, y, z]:
 x (1) x (2)
 x (3) x (4)
 x (5) x (7)
 x (6) x (9)
 x (8) x (10)

>>> import pept.tracking.trajectory_separation as tsp
>>> points_window = 10
>>> trajectory_cut_distance = 15 # mm
>>> segregated_trajectories = tsp.segregate_trajectories(
>>> points, points_window, trajectory_cut_distance
>>>)

`segregated_trajectories`, numpy.ndarray, shape (10, 5),
columns [time, x, y, z, trajectory_label]:
 x (1, label = 0) x (2, label = 1)
 x (3, label = 0) x (4, label = 1)
 x (5, label = 0) x (7, label = 1)
 x (6, label = 0) x (9, label = 1)
 x (8, label = 0) x (10, label = 1)

	Attributes

	
	windowint [https://docs.python.org/3/library/functions.html#int]
	Two points are “reachable” (i.e. they can be connected) if and only
if they are within points_window in the time-sorted input
point_data. As the points from different trajectories are
intertwined (e.g. for two tracers A and B, the point_data array
might have two entries for A, followed by three entries for B, then
one entry for A, etc.), this should optimally be the largest number
of points in the input array between two consecutive points on the
same trajectory. If points_window is too small, all points in the
dataset will be unreachable. Naturally, a larger time_window
correponds to more pairs needing to be checked (and the function
will take a longer to complete).

	cut_distancefloat [https://docs.python.org/3/library/functions.html#float]
	Once all the closest points are connected (i.e. the minimum
spanning tree is constructed), separate all trajectories that are
further apart than trajectory_cut_distance.

	min_trajectory_sizefloat [https://docs.python.org/3/library/functions.html#float], default 5
	After the trajectories have been cut, declare all trajectories with
fewer points than min_trajectory_size as noise.

	max_time_intervalfloat [https://docs.python.org/3/library/functions.html#float], default np.finfo(float [https://docs.python.org/3/library/functions.html#float]):obj:.max
	Only connect points if the time difference between their timestamps is
smaller than max_time_interval. Setting added in pept-0.5.2.

	
__init__(window, cut_distance, min_trajectory_size=5, max_time_interval=1.7976931348623157e+308)

	

Methods

	__init__(window, cut_distance[, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(points)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(points)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Reconnect

	
class pept.tracking.Reconnect(tmax, dmax, column='label', num_points=10, **signatures)

	Bases: Reducer

Best-fit trajectory segment reconstruction based on time, distance and
arbitrary tracer signatures.

Reducer signature:

 pept.PointData -> Segregate.fit -> pept.PointData
list[pept.PointData] -> Segregate.fit -> pept.PointData
 numpy.ndarray -> Segregate.fit -> pept.PointData

After a trajectory segregation step (e.g. using Segregate), you may be
left with multiple smaller trajectory segments. Some trajectories can be
reconstructed even when losing the tracers for a bit.

When a tracer is lost for less than tmax time and dmax distance, its
trajectory segments are reconnected; if multiple condidates are possible,
the best fit is used.

Multiple tracer signatures can be used to improve the reconnection step;
supply them as data column names and difference thresholds, e.g. an extra
keyword argument v = 1 will join trajectories whose difference in
velocity is smaller than 1 m/s.

The last num_points points on a segment are averaged before they are
connected with the first num_points on another segment.

New in pept-0.4.2

Examples

Reconnect segments that are closer than 1 second in time and 0.1 m apart:

>>> from pept.tracking import *
>>> trajectories = Reconnect(tmax = 1000, dmax = 100).fit(segments)

You can use the cluster_size (set by the Centroids filter) as a
tracer signature; allow segments to be reconnected if the difference in
their cluster size is < 100:

>>> trajectories = Reconnect(1000, 100, cluster_size = 100).fit(segments)

And a velocity v difference < 0.1:

>>> Reconnect(1000, 100, cluster_size = 100, v = 0.1).fit(segments)

	
__init__(tmax, dmax, column='label', num_points=10, **signatures)

	

Methods

	__init__(tmax, dmax[, column, num_points])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(points)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(points)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.TimeOfFlight

	
class pept.tracking.TimeOfFlight(temporal_resolution=None, points=False)

	Bases: LineDataFilter

Compute the positron annihilation locations of each LoR as given by the
Time Of Flight (ToF) data of the two LoR timestamps.

Filter signature:

LineData -> TimeOfFlight.fit_sample -> LineData (points = False)
LineData -> TimeOfFlight.fit_sample -> PointData (points = True)

Importantly, the input LineData must have at least 8 columns, formatted as
[t1, x1, y1, z1, x2, y2, z2, t2] - notice the different timestamps of the
two LoR ends.

If points = False (default), the computed ToF points are saved as an
extra attribute “tof” in the input LineData; otherwise they are returned
directly.

The temporal_resolution should be set to the FWHM of the temporal
resolution in the LoR timestamps, in self-consistent units of measure (e.g.
m / s or mm / ms, but not mm / s). If it is set, the “temporal_resolution”
and “spatial_resolution” extra attributes are set on the ToF points.

New in pept-0.4.2

Examples

Generate 10 random LoRs between (-100, 100) mm and ms with 8 columns for
the ToF format.

>>> import numpy as np
>>> import pept

>>> rng = np.random.default_rng(0)
>>> lors = pept.LineData(
>>> rng.uniform(-100, 100, (10, 8)),
>>> columns = ["t1", "x1", "y1", "z1", "x2", "y2", "z2", "t2"],
>>>)
>>> lors
pept.LineData (samples: 1)

sample_size = 10
overlap = 0
lines =
 (rows: 10, columns: 8)
 [[57.4196615 -52.1261114 ... -9.93212667 59.26485406]
 [-53.8715582 -89.59573979 ... -40.26077344 34.39897559]
 ...
 [51.59020047 2.55174465 ... -31.13800424 -13.94025361]
 [93.21241616 12.44636845 ... -75.08905883 -42.3338486]]
columns = ['t1', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2', 't2']
attrs = {}

Compute Time of Flight annihilation locations from the two timestamps
in the data above. Assume a temporal resolution of 100 ps - be careful to
use self-consistent units; in this case we are using mm and ms:

>>> from pept.tracking import *

>>> temporal_resolution = 100e-12 * 1000 # ms
>>> lors_tof = TimeOfFlight(temporal_resolution).fit_sample(lors)
>>> lors_tof
pept.LineData (samples: 1)

sample_size = 10
overlap = 0
lines =
 (rows: 10, columns: 8)
 [[57.4196615 -52.1261114 ... -9.93212667 59.26485406]
 [-53.8715582 -89.59573979 ... -40.26077344 34.39897559]
 ...
 [51.59020047 2.55174465 ... -31.13800424 -13.94025361]
 [93.21241616 12.44636845 ... -75.08905883 -42.3338486]]
columns = ['t1', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2', 't2']
attrs = {
 'tof': pept.PointData (samples: 1)

sample_...
}

>>> lors_tof.attrs["tof"]
pept.PointData (samples: 1)

sample_size = 10
overlap = 0
points =
 (rows: 10, columns: 4)
 [[5.64970655e+01 -3.22092074e+07 2.41767704e+08 -1.30428351e+08]
 [-9.80068250e+01 -2.48775932e+09 -1.12904720e+10 -6.43480969e+09]
 ...
 [1.88249731e+01 3.34819602e+09 -8.78848458e+09 2.83529405e+09]
 [2.54392837e+01 1.90343279e+10 -1.92717662e+09 -6.84078611e+09]]
columns = ['t', 'x', 'y', 'z']
attrs = {
 'temporal_resolution': 1.0000000000000001e-07
 'spatial_resolution': 29.9792458
}

Alternatively, you can extract only the ToF points directly:

>>> tof = TimeOfFlight(temporal_resolution, points = True).fit_sample(lors)
>>> tof
pept.PointData (samples: 1)

sample_size = 10
overlap = 0
points =
 (rows: 10, columns: 4)
 [[5.64970655e+01 -3.22092074e+07 2.41767704e+08 -1.30428351e+08]
 [-9.80068250e+01 -2.48775932e+09 -1.12904720e+10 -6.43480969e+09]
 ...
 [1.88249731e+01 3.34819602e+09 -8.78848458e+09 2.83529405e+09]
 [2.54392837e+01 1.90343279e+10 -1.92717662e+09 -6.84078611e+09]]
columns = ['t', 'x', 'y', 'z']
attrs = {
 'temporal_resolution': 1.0000000000000001e-07
 'spatial_resolution': 29.9792458
}

	
__init__(temporal_resolution=None, points=False)

	

Methods

	__init__([temporal_resolution, points])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(sample: LineData)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.CutpointsToF

	
class pept.tracking.CutpointsToF(max_distance=None, cutoffs=None, append_indices=False, cutpoints_only=False)

	Bases: LineDataFilter

Compute cutpoints from all pairs of lines whose Time Of Flight-predicted
locations are closer than max_distance.

Filter signature:

LineData -> CutpointsToF.fit_sample -> PointData

If the TimeOfFlight filter was used and a temporal resolution was
specified (as a FWHM), then max_distance is automatically inferred as
the minimum between 2 * “spatial_resolution” and the dimension-wise
standard deviation of the input points.

The cutoffs parameter may be set as [xmin, xmax, ymin, ymax, zmin, zmax]
for a minimum bounding box outside of which cutpoints are discarded.
Otherwise it is automatically set to the minimum bounding box containing
all input LoRs.

If append_indices = True, two extra columns are appended to the result as
“line_index1” and “line_index2” containing the indices of the LoRs that
produced each cutpoint; an extra attribute “_lines” is also set to the
input LineData.

If cutpoints_only = False (default), the Time Of Flight-predicted
positron annihilation locations are also appended to the returned points.

New in pept-0.4.2

See also

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.tracking.HDBSCAN
	Efficient, HDBSCAN-based clustering of (cut)points.

	pept.read_csv
	Fast CSV file reading into numpy arrays.

Examples

Make sure to use the TimeOfFlight filter to compute to ToF annihilation
locations; if you specify a temporal resolution, the max_distance
parameter is automatically computed:

>>> import pept
>>> from pept.tracking import *

>>> line_data = pept.LineData(example_tof_data)
>>> line_data_tof = TimeOfFlight(100e-9).fit_sample(line_data)
>>> cutpoints_tof = CutpointsToF().fit_sample(line_data_tof)

Alternatively, set max_distance yourself:

>>> line_data = pept.LineData(example_tof_data)
>>> line_data_tof = TimeOfFlight().fit_sample(line_data)
>>> cutpoints_tof = CutpointsToF(5.0).fit_sample(line_data_tof)

	
__init__(max_distance=None, cutoffs=None, append_indices=False, cutpoints_only=False)

	

Methods

	__init__([max_distance, cutoffs, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(line_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(sample_lines)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Attributes

	append_indices

	

	cutoffs

	

	max_distance

	

	
property max_distance

	

	
property cutoffs

	

	
property append_indices

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(line_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
fit_sample(sample_lines: LineData)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.GaussianDensity

	
class pept.tracking.GaussianDensity(sigma=None)

	Bases: Filter

Append weights according to the Gaussian distribution that best fits
the samples of points.

Filter signature:

 PointData -> GaussianDensity.fit_sample -> PointData
 numpy.ndarray -> GaussianDensity.fit_sample -> PointData
list[PointData] -> GaussianDensity.fit_sample -> list[PointData]

This is treated as an optimisation problem: find the 3D location that
maximises the sum of Probability Distributions (PDF) centered at each
point.

Given N points p_1, p_2, ..., p_N:

 N
maximise sum(exp(-0.5 * |x - p_i|^2 / sigma^2))
 x i

Each point is then assigned a weight corresponding to its PDF - i.e. the
exponential part - saved in the weight column.

Sigma controls the standard deviation of the Gaussian distribution centred
at each point; this corresponds to the relative uncertainty in each point’s
location. For TimeOfFlight data, leave sigma = None and it will be
computed from the “spatial_resolution” attribute.

You can use Centroids afterwards to compute the weighted centroid, i.e.
where the tracer is. For multiple particle tracking (or just more
robustness to noise) you can use HDBSCAN + SplitLabels beforehand.

New in pept-0.4.2

	
__init__(sigma=None)

	

Methods

	__init__([sigma])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(points)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(samples, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
fit_sample(points)

	

pept.tracking.Velocity

	
class pept.tracking.Velocity(window, degree=2, absolute=False)

	Bases: PointDataFilter

Append the dimension-wise or absolute velocity to samples of points
using a 2D fitted polynomial in a rolling window mode.

Filter signature:

PointData -> Velocity.fit_sample -> PointData

If Numba is installed, a fast, natively-compiled algorithm is used.

If absolute = False, the “vx”, “vy” and “vz” columns are appended. If
absolute = True, then the “v” column is appended.

	
__init__(window, degree=2, absolute=False)

	

Methods

	__init__(window[, degree, absolute])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(point_data[, executor, max_workers, verbose])

	Apply self.fit_sample (implemented by subclasses) according to the execution policy.

	fit_sample(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit_sample(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(point_data, executor='joblib', max_workers=None, verbose=True)

	Apply self.fit_sample (implemented by subclasses) according to the
execution policy. Simply return a list of processed samples. If you
need a reduction step (e.g. stack all processed samples), apply it
in the subclass.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Post Processing (pept.processing)

The PEPT-oriented post-processing suite, including occupancy grid,
vector velocity fields, etc.

This module contains fast, robust functions that operate on PEPT-like data
and integrate with the pept library’s base classes.

Probability / Residence Distributions

	pept.processing.DynamicProbability2D(...[, ...])

	Compute the 2D probability distribution of some tracer quantity (eg velocity in each cell).

	pept.processing.DynamicProbability3D(...[, ...])

	Compute the 3D probability distribution of some tracer quantity (eg velocity in each cell).

	pept.processing.ResidenceDistribution2D(diameter)

	Compute the 2D residence distribution of some tracer quantity (eg time spent in each cell).

	pept.processing.ResidenceDistribution3D(diameter)

	Compute the 3D residence distribution of some tracer quantity (eg time spent in each cell).

Vector Grids

	pept.processing.VectorField2D(diameter[, ...])

	Compute a 2D vector field - effectively two 2D grids computed from two columns, for example X and Y velocities.

	pept.processing.VectorGrid2D(xpixels, ypixels)

	Object produced by VectorField2D storing 2 grids of voxels xpixels, ypixels, for example velocity vector fields / quiver plots.

	pept.processing.VectorField3D(diameter[, ...])

	Compute a 3D vector field - effectively three 3D grids computed from three columns, for example X, Y and Z velocities.

	pept.processing.VectorGrid3D(xvoxels, ...)

	Object produced by VectorField3D storing 3 grids of voxels xvoxels, yvoxels, zvoxels, for example velocity vector fields / quiver plots.

Mixing Quantification

	pept.processing.LaceyColors(p1, p2[, ax1, ...])

	Compute Lacey-like mixing image, with streamlines passing through plane 1 being split into Red and Blue tracers, then evaluated into RGB pixels at a later point in plane 2.

	pept.processing.LaceyColorsLinear(directory, ...)

	Apply the LaceyColors mixing algorithm at num_divisions equidistant points between p1 and p2, saving images at each step in directory.

	pept.processing.RelativeDeviations(p1, p2[, ...])

	Compute a Lagrangian mixing measure - the changes in tracer distances to a point P1 as they pass through an "inlet" plane and another point P2 when reaching an "outlet" plane.

	pept.processing.RelativeDeviationsLinear(...)

	Apply the RelativeDeviations mixing algorithm at num_divisions equidistant points between p1 and p2, saving histogram images at each step in directory.

	pept.processing.AutoCorrelation([lag, ...])

	Compute autocorrelation of multiple measures (eg YZ velocities) as a function of a lagging variable (eg time).

	pept.processing.SpatialProjections(...[, ...])

	Project multiple tracer passes onto a moving 2D plane along a given direction between start and end coordinates, saving each frame in directory.

pept.processing.DynamicProbability2D

	
class pept.processing.DynamicProbability2D(diameter, column, dimensions='xy', resolution=(512, 512), xlim=None, ylim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute the 2D probability distribution of some tracer quantity (eg
velocity in each cell).

Reducer signature:

 PointData -> DynamicProbability2D.fit -> Pixels
list[PointData] -> DynamicProbability2D.fit -> Pixels
 numpy.ndarray -> DynamicProbability2D.fit -> Pixels

This reducer calculates the average value of the tracer quantity in each
cell of a 2D pixel grid; it uses the full projected tracer area for the
pixelization step, so the distribution is accurate for arbitrarily fine
resolutions.

	Parameters

	
	diameterfloat [https://docs.python.org/3/library/functions.html#float]
	The diameter of the imaged tracer.

	columnstr [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]
	The PointData column used to compute the probability distribution,
given as a name (str) or index (int).

	dimensionsstr [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], default “xy”
	The tracer coordinates used to rasterize its trajectory, given as a
string (e.g. “xy” projects the points onto the XY plane) or a list with
two column indices (e.g. [1, 3] for XZ).

	resolutiontuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], default (512, 512)
	The number of pixels used for the rasterization grid in the X and Y
dimensions.

	xlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the X dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	ylimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the y dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	max_workersint [https://docs.python.org/3/library/functions.html#int], optional
	The maximum number of workers (threads, processes or ranks) to use by
the parallel executor; if 1, it is sequential (and produces the
clearest error messages should they happen). If unset, the
os.cpu_count() is used.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values] or str [https://docs.python.org/3/library/stdtypes.html#str] default True [https://docs.python.org/3/library/constants.html#True]
	If True, time the computation and print the state of the execution.

Examples

Compute the velocity probability distribution of a single tracer trajectory
having a column named “v” corresponding to the tracer velocity:

>>> trajectories = pept.load(...)
>>> pixels_vel = DynamicProbability2D(1.2, "v", "xy").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_pixels(pixels_vel).show()

For multiple tracer trajectories, you can use Segregate then
SplitAll('label') before calling this reducer to rasterize each
trajectory separately:

>>> vel_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> DynamicProbability2D(1.2, "v", "xy")
>>>])
>>> pixels_vel = vel_pipeline.fit(trajectories)

	
__init__(diameter, column, dimensions='xy', resolution=(512, 512), xlim=None, ylim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter, column[, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.DynamicProbability3D

	
class pept.processing.DynamicProbability3D(diameter, column, dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute the 3D probability distribution of some tracer quantity (eg
velocity in each cell).

Reducer signature:

 PointData -> DynamicProbability3D.fit -> Voxels
list[PointData] -> DynamicProbability3D.fit -> Voxels
 numpy.ndarray -> DynamicProbability3D.fit -> Voxels

This reducer calculates the average value of the tracer quantity in each
cell of a 3D voxel grid; it uses the full projected tracer area for the
voxelization step, so the distribution is accurate for arbitrarily fine
resolutions.

	Parameters

	
	diameterfloat [https://docs.python.org/3/library/functions.html#float]
	The diameter of the imaged tracer.

	columnstr [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]
	The PointData column used to compute the probability distribution,
given as a name (str) or index (int).

	dimensionsstr [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], default “xyz”
	The tracer coordinates used to rasterize its trajectory, given as a
string (e.g. “xyz” or “zyx”) or a list with
three column indices (e.g. [1, 2, 3] for XYZ).

	resolutiontuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], default (50, 50, 50)
	The number of pixels used for the rasterization grid in the X, Y, Z
dimensions.

	xlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the X dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	ylimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the y dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	zlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the z dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	max_workersint [https://docs.python.org/3/library/functions.html#int], optional
	The maximum number of workers (threads, processes or ranks) to use by
the parallel executor; if 1, it is sequential (and produces the
clearest error messages should they happen). If unset, the
os.cpu_count() is used.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values] or str [https://docs.python.org/3/library/stdtypes.html#str] default True [https://docs.python.org/3/library/constants.html#True]
	If True, time the computation and print the state of the execution.

Examples

Compute the velocity probability distribution of a single tracer trajectory
having a column named “v” corresponding to the tracer velocity:

>>> trajectories = pept.load(...)
>>> voxels_vel = DynamicProbability3D(1.2, "v").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher
>>> PlotlyGrapher().add_voxels(voxels_vel).show()

For multiple tracer trajectories, you can use Segregate then
SplitAll('label') before calling this reducer to rasterize each
trajectory separately:

>>> vel_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> DynamicProbability3D(1.2, "v")
>>>])
>>> voxels_vel = vel_pipeline.fit(trajectories)

	
__init__(diameter, column, dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter, column[, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.ResidenceDistribution2D

	
class pept.processing.ResidenceDistribution2D(diameter, column='t', dimensions='xy', resolution=(512, 512), xlim=None, ylim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute the 2D residence distribution of some tracer quantity (eg
time spent in each cell).

Reducer signature:

 PointData -> ResidenceDistribution2D.fit -> Pixels
list[PointData] -> ResidenceDistribution2D.fit -> Pixels
 numpy.ndarray -> ResidenceDistribution2D.fit -> Pixels

This reducer calculates the cumulative value of the tracer quantity in each
cell of a 2D pixel grid; it uses the full projected tracer area for the
pixelization step, so the distribution is accurate for arbitrarily fine
resolutions.

	Parameters

	
	diameterfloat [https://docs.python.org/3/library/functions.html#float]
	The diameter of the imaged tracer.

	columnstr [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int], default “t”
	The PointData column used to compute the residence distribution,
given as a name (str) or index (int).

	dimensionsstr [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], default “xy”
	The tracer coordinates used to rasterize its trajectory, given as a
string (e.g. “xy” projects the points onto the XY plane) or a list with
two column indices (e.g. [1, 3] for XZ).

	resolutiontuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], default (512, 512)
	The number of pixels used for the rasterization grid in the X and Y
dimensions.

	xlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the X dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	ylimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the y dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	max_workersint [https://docs.python.org/3/library/functions.html#int], optional
	The maximum number of workers (threads, processes or ranks) to use by
the parallel executor; if 1, it is sequential (and produces the
clearest error messages should they happen). If unset, the
os.cpu_count() is used.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values] or str [https://docs.python.org/3/library/stdtypes.html#str] default True [https://docs.python.org/3/library/constants.html#True]
	If True, time the computation and print the state of the execution.

Examples

Compute the residence time distribution of a single tracer trajectory:

>>> trajectories = pept.load(...)
>>> pixels_rtd = ResidenceDistribution2D(1.2, "t", "xy").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_pixels(pixels_rtd).show()

For multiple tracer trajectories, you can use Segregate then
SplitAll('label') before calling this reducer to rasterize each
trajectory separately:

>>> rtd_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> ResidenceDistribution2D(1.2, "t", "xy")
>>>])
>>> pixels_rtd = rtd_pipeline.fit(trajectories)

	
__init__(diameter, column='t', dimensions='xy', resolution=(512, 512), xlim=None, ylim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter[, column, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.ResidenceDistribution3D

	
class pept.processing.ResidenceDistribution3D(diameter, column='t', dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute the 3D residence distribution of some tracer quantity (eg
time spent in each cell).

Reducer signature:

 PointData -> ResidenceDistribution3D.fit -> Pixels
list[PointData] -> ResidenceDistribution3D.fit -> Pixels
 numpy.ndarray -> ResidenceDistribution3D.fit -> Pixels

This reducer calculates the cumulative value of the tracer quantity in each
cell of a 3D voxel grid; it uses the full projected tracer area for the
voxelization step, so the distribution is accurate for arbitrarily fine
resolutions.

	Parameters

	
	diameterfloat [https://docs.python.org/3/library/functions.html#float]
	The diameter of the imaged tracer.

	columnstr [https://docs.python.org/3/library/stdtypes.html#str] or int [https://docs.python.org/3/library/functions.html#int]
	The PointData column used to compute the probability distribution,
given as a name (str) or index (int).

	dimensionsstr [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][int [https://docs.python.org/3/library/functions.html#int]], default “xyz”
	The tracer coordinates used to rasterize its trajectory, given as a
string (e.g. “xyz” or “zyx”) or a list with
three column indices (e.g. [1, 2, 3] for XYZ).

	resolutiontuple [https://docs.python.org/3/library/stdtypes.html#tuple][int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int], int [https://docs.python.org/3/library/functions.html#int]], default (50, 50, 50)
	The number of pixels used for the rasterization grid in the X, Y, Z
dimensions.

	xlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the X dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	ylimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the y dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	zlimtuple [https://docs.python.org/3/library/stdtypes.html#tuple][float [https://docs.python.org/3/library/functions.html#float], float [https://docs.python.org/3/library/functions.html#float]], optional
	The physical limits in the z dimension of the pixel grid. If unset, it
is automatically computed to contain all tracer positions (default).

	max_workersint [https://docs.python.org/3/library/functions.html#int], optional
	The maximum number of workers (threads, processes or ranks) to use by
the parallel executor; if 1, it is sequential (and produces the
clearest error messages should they happen). If unset, the
os.cpu_count() is used.

	verbosebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values] or str [https://docs.python.org/3/library/stdtypes.html#str] default True [https://docs.python.org/3/library/constants.html#True]
	If True, time the computation and print the state of the execution.

Examples

Compute the residence time distribution of a single tracer trajectory:

>>> trajectories = pept.load(...)
>>> voxels_rtd = ResidenceDistribution3D(1.2, "t").fit(trajectories)

Plot the pixel grid:

>>> from pept.plots import PlotlyGrapher
>>> PlotlyGrapher().add_voxels(voxels_rtd).show()

For multiple tracer trajectories, you can use Segregate then
SplitAll('label') before calling this reducer to rasterize each
trajectory separately:

>>> rtd_pipeline = pept.Pipeline([
>>> Segregate(20, 10),
>>> SplitAll("label"),
>>> ResidenceDistribution3D(1.2, "t")
>>>])
>>> voxels_rtd = rtd_pipeline.fit(trajectories)

	
__init__(diameter, column='t', dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter[, column, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.VectorField2D

	
class pept.processing.VectorField2D(diameter, columns=['vx', 'vy'], dimensions='xy', resolution=(50, 50), xlim=None, ylim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute a 2D vector field - effectively two 2D grids computed from
two columns, for example X and Y velocities.

Reducer signature:

 PointData -> VectorField2D.fit -> VectorGrid2D
list[PointData] -> VectorField2D.fit -> VectorGrid2D
 numpy.ndarray -> VectorField2D.fit -> VectorGrid2D

Examples

Compute a velocity vector field in the Y and Z dimensions (velocities
were first calculated using pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField2D(0.6, ["vy", "vz"], "yz").fit(trajectories)
>>> field
VectorGrid2D(xpixels, ypixels)

Create a quiver plot using Plotly (may be a bit slow):

>>> scaling = 16
>>> fig = field.quiver(scaling)
>>> fig.show()

Create a 2D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

	
__init__(diameter, columns=['vx', 'vy'], dimensions='xy', resolution=(50, 50), xlim=None, ylim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter[, columns, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.VectorGrid2D

	
class pept.processing.VectorGrid2D(xpixels: Pixels, ypixels: Pixels)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object produced by VectorField2D storing 2 grids of voxels
xpixels, ypixels, for example velocity vector fields / quiver plots.

Examples

Compute a velocity vector field in the Y and Z dimensions (velocities
were first calculated using pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField2D(0.6, ["vy", "vz"], "yz").fit(trajectories)
>>> field
VectorGrid2D(xpixels, ypixels)

Create a quiver plot using Plotly (may be a bit slow):

>>> scaling = 16
>>> fig = field.quiver(scaling)
>>> fig.show()

Create a 2D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

	
__init__(xpixels: Pixels, ypixels: Pixels)

	

Methods

	__init__(xpixels, ypixels)

	

	quiver([factor])

	

	vectors([factor])

	

	
vectors(factor=1)

	

	
quiver(factor=1)

	

pept.processing.VectorField3D

	
class pept.processing.VectorField3D(diameter, columns=['vx', 'vy', 'vz'], dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	Bases: Reducer

Compute a 3D vector field - effectively three 3D grids computed from
three columns, for example X, Y and Z velocities.

Reducer signature:

 PointData -> VectorField3D.fit -> VectorGrid3D
list[PointData] -> VectorField3D.fit -> VectorGrid3D
 numpy.ndarray -> VectorField3D.fit -> VectorGrid3D

Examples

Compute a 3D velocity vector field (velocities were first calculated using
pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField3D(0.6).fit(trajectories)
>>> field
VectorGrid3D(xvoxels, yvoxels, zvoxels)

Create a 3D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

	
__init__(diameter, columns=['vx', 'vy', 'vz'], dimensions='xyz', resolution=(50, 50, 50), xlim=None, ylim=None, zlim=None, max_workers=None, verbose=True)

	

Methods

	__init__(diameter[, columns, dimensions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(samples)

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(samples)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.VectorGrid3D

	
class pept.processing.VectorGrid3D(xvoxels: Voxels, yvoxels: Voxels, zvoxels: Voxels)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Object produced by VectorField3D storing 3 grids of voxels
xvoxels, yvoxels, zvoxels, for example velocity vector fields /
quiver plots.

Examples

Compute a 3D velocity vector field (velocities were first calculated using
pept.tracking.Velocity):

>>> from pept.processing import *
>>> trajectories = pept.PointData(...)
>>> field = VectorField3D(0.6).fit(trajectories)
>>> field
VectorGrid3D(xvoxels, yvoxels, zvoxels)

Create a 3D vector field (needs PyVista):

>>> scaling = 16
>>> fig = field.vectors(scaling)
>>> fig.plot(cmap = "magma")

	
__init__(xvoxels: Voxels, yvoxels: Voxels, zvoxels: Voxels)

	

Methods

	__init__(xvoxels, yvoxels, zvoxels)

	

	vectors([factor])

	

	
vectors(factor=1)

	

pept.processing.LaceyColors

	
class pept.processing.LaceyColors(p1, p2, ax1=None, ax2=None, basis1=None, basis2=None, xlim=None, ylim=None, max_distance=10, resolution=(8, 8))

	Bases: Reducer

Compute Lacey-like mixing image, with streamlines passing through plane
1 being split into Red and Blue tracers, then evaluated into RGB pixels at
a later point in plane 2.

Intuitively, red and blue pixels will contain unmixed streamlines, while
purple pixels will indicate mixing.

Reducer signature:

 PointData -> LaceyColors.fit -> (height, width, 3) pept.Voxels
 list[PointData] -> LaceyColors.fit -> (height, width, 3) pept.Voxels
list[np.ndarray] -> LaceyColors.fit -> (height, width, 3) pept.Voxels

Each sample in the input `PointData` is treated as a separate streamline
/ tracer pass. You can group passes using `Segregate + GroupBy(“label”)`.

The first plane where tracers are split into Red and Blue streamlines is
defined by a point p1 and direction axis ax1. The point `p1` should
be the middle of the pipe.

The second plane where mixing is evaluated is similarly defined by p2 and
ax2. The point `p2` should be the middle of the volume / pipe.

If the direction vectors ax1 and ax2 are undefined (None), the
tracers are assumed to follow a straight line between p1 and p2.

The max_distance parameter defines the maximum distance allowed between
a point and a plane to be considered part of it. The resolution defines
the number of pixels in the height and width of the resulting image.

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the LaceyColors reducer can be used to create an image of the mixing
between the pipe entrance and exit:

>>> from pept.processing import LaceyColors
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> lacey_image = LaceyColors(entrance, exit).fit(streamlines)
>>> print(lacey_image.voxels) # RGB channels of image
(8, 8, 3)

Now the image can be visualised e.g. with Plotly:

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_image(lacey_image).show()

	
__init__(p1, p2, ax1=None, ax2=None, basis1=None, basis2=None, xlim=None, ylim=None, max_distance=10, resolution=(8, 8))

	

Methods

	__init__(p1, p2[, ax1, ax2, basis1, basis2, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.LaceyColorsLinear

	
class pept.processing.LaceyColorsLinear(directory, p1, p2, xlim=None, ylim=None, num_divisions=50, max_distance=10, resolution=(8, 8), height=1000, width=1000, prefix='frame')

	Bases: Reducer

Apply the LaceyColors mixing algorithm at num_divisions equidistant
points between p1 and p2, saving images at each step in directory.

Reducer signature:

 PointData -> LaceyColors.fit -> (height, width, 3) np.ndarray
 list[PointData] -> LaceyColors.fit -> (height, width, 3) np.ndarray
list[np.ndarray] -> LaceyColors.fit -> (height, width, 3) np.ndarray

For details about the mixing algorithm itself, check the LaceyColors
documentation.

The generated images (saved in directory with height x width pixels)
can be stitched into a video using pept.plots.make_video.

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the LaceyColorsLinear reducer can be used to create images of the
mixing between the pipe entrance and exit:

>>> from pept.processing import LaceyColorsLinear
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> LaceyColorsLinear(
>>> directory = "lacey", # Creates directory and saves images there
>>> p1 = entrance,
>>> p2 = exit,
>>>).fit(streamlines)

Now the directory “lacey” was created inside your current working folder,
and all Lacey images saved there as “frame0000.png”, “frame0001.png”, etc.
You can stitch all images together into a video using
pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video("lacey/frame*.png", output = "lacey/video.avi")

	
__init__(directory, p1, p2, xlim=None, ylim=None, num_divisions=50, max_distance=10, resolution=(8, 8), height=1000, width=1000, prefix='frame')

	

Methods

	__init__(directory, p1, p2[, xlim, ylim, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.RelativeDeviations

	
class pept.processing.RelativeDeviations(p1, p2, ax1=None, ax2=None, max_distance=10, histogram=True, **kwargs)

	Bases: Reducer

Compute a Lagrangian mixing measure - the changes in tracer distances
to a point P1 as they pass through an “inlet” plane and another point P2
when reaching an “outlet” plane.

A deviation is computed for each tracer trajectory, yielding a range of
deviations that can e.g be histogrammed (default). Intuitively, mixing is
stronger if this distribution of deviations is wider.

Reducer signature:

If ``histogram = True`` (default)
 PointData -> LaceyColors.fit -> plotly.graph_objs.Figure
 list[PointData] -> LaceyColors.fit -> plotly.graph_objs.Figure
list[np.ndarray] -> LaceyColors.fit -> plotly.graph_objs.Figure

If ``histogram = False`` (return deviations)
 PointData -> LaceyColors.fit -> (N,) np.ndarray
 list[PointData] -> LaceyColors.fit -> (N,) np.ndarray
list[np.ndarray] -> LaceyColors.fit -> (N,) np.ndarray

Each sample in the input `PointData` is treated as a separate streamline
/ tracer pass. You can group passes using `Segregate + GroupBy(“label”)`.

The first plane where the distances from tracers to a point p1 is defined
by the point p1 and direction axis ax1. The point `p1` should be the
middle of the pipe.

The second plane where relative distances are evaluated is similarly
defined by p2 and ax2. The point `p2` should be the middle of the
volume / pipe.

If the direction vectors ax1 and ax2 are undefined (None), the
tracers are assumed to follow a straight line between p1 and p2.

The max_distance parameter defines the maximum distance allowed between
a point and a plane to be considered part of it. The resolution defines
the number of pixels in the height and width of the resulting image.

The following attributes are always set. A Plotly figure is only generated
and returned if histogram = True (default).

The extra keyword arguments **kwargs are passed to the histogram
creation routine pept.plots.histogram. You can e.g. set the YAxis limits
by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the RelativeDeviations reducer can be used to create a histogram of
tracer deviations due to mixing:

>>> from pept.processing import RelativeDeviations
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> fig = RelativeDeviations(entrance, exit).fit(streamlines)
>>> fig.show()

The deviations themselves can be extracted directly for further processing:

>>> mixing_algorithm = RelativeDeviations(entrance, exit, histogram=False)
>>> mixing_algorithm.fit(streamlines)

>>> deviations = mixing_algorithm.deviations
>>> inlet_points = mixing_algorithm.points1
>>> outlet_points = mixing_algorithm.points2

	Attributes

	
	points1pept.PointData
	The tracer points selected at the inlet around p1.

	points2pept.PointData
	The tracer points selected at the outlet around p2.

	deviations(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The vector of tracer deviations for each tracer pass in points1 and
points2.

	
__init__(p1, p2, ax1=None, ax2=None, max_distance=10, histogram=True, **kwargs)

	

Methods

	__init__(p1, p2[, ax1, ax2, max_distance, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.RelativeDeviationsLinear

	
class pept.processing.RelativeDeviationsLinear(directory, p1, p2, num_divisions=50, max_distance=10, height=1000, width=2000, prefix='frame', **kwargs)

	Bases: Reducer

Apply the RelativeDeviations mixing algorithm at num_divisions
equidistant points between p1 and p2, saving histogram images at each
step in directory.

Reducer signature:

 PointData -> LaceyColors.fit -> plotly.graph_objs.Figure
 list[PointData] -> LaceyColors.fit -> plotly.graph_objs.Figure
list[np.ndarray] -> LaceyColors.fit -> plotly.graph_objs.Figure

For details about the mixing algorithm itself, check the
RelativeDeviations documentation.

This algorithm saves a rich set of data:

	Individual histograms for each point along P1-P2 are saved in the given
directory.

	A Plotly figure of computed statistics is returned, including the
deviations’ mean, standard deviation, skewness and kurtosis.

	The raw data is saved as object attributes (see below).

The generated images (saved in directory with height x width pixels)
can be stitched into a video using pept.plots.make_video.

The extra keyword arguments **kwargs are passed to the histogram
creation routine pept.plots.histogram. You can e.g. set the YAxis limits
by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the RelativeDeviationsLinear reducer can be used to create images of
the mixing between the pipe entrance and exit:

>>> from pept.processing import RelativeDeviationsLinear
>>> entrance = [-100, 0, 0] # Pipe data was aligned with X and centred
>>> exit = [100, 0, 0]
>>> summary_fig = RelativeDeviationsLinear(
>>> directory = "deviations", # Creates directory to save images
>>> p1 = entrance,
>>> p2 = exit,
>>>).fit(streamlines)
>>> summary_fig.show() # Summary statistics: mean, std, etc.

Now the directory “deviations” was created inside your current working
folder, and all relative deviation histograms were saved there as
“frame0000.png”, “frame0001.png”, etc.
You can stitch all images together into a video using
pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video(
>>> "deviations/frame*.png",
>>> output = "deviations/video.avi"
>>>)

The raw deviations and statistics can also be extracted directly:

>>> mixing_algorithm = RelativeDeviationsLinear(
>>> directory = "deviations", # Creates directory to save images
>>> p1 = entrance,
>>> p2 = exit,
>>>)
>>> fig = mixing_algorithm.fit(streamlines)
>>> fig.show()

>>> deviations = mixing_algorithm.deviations
>>> mean = mixing_algorithm.mean
>>> std = mixing_algorithm.std
>>> skew = mixing_algorithm.skew
>>> kurtosis = mixing_algorithm.kurtosis

	Attributes

	
	deviationslist [https://docs.python.org/3/library/stdtypes.html#list][(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]]
	A list of deviations computed by RelativeDeviations at each point
between P1 and P2.

	mean(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A vector of mean tracer deviations at each point between P1 and P2.

	std(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A vector of the tracer deviations’ standard deviation at each point
between P1 and P2.

	skew(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A vector of the tracer deviations’ adjusted skewness at each point
between P1 and P2. A normal distribution has a value of 0; positive
values indicate a longer right distribution tail; negative values
indicate a heavier left tail.

	kurtosis(N,) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A vector of the tracer deviations’ Fisher kurtosis at each point
between P1 and P2. A normal distribution has a value of 0; positive
values indicate a “thin” distribution; negative values indicate a
heavy, wide distribution.

	
__init__(directory, p1, p2, num_divisions=50, max_distance=10, height=1000, width=2000, prefix='frame', **kwargs)

	

Methods

	__init__(directory, p1, p2[, num_divisions, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.AutoCorrelation

	
class pept.processing.AutoCorrelation(lag='t', signals=['vx', 'vy', 'vz'], span=None, num_divisions=500, max_distance=10, normalize=False, preprocess=True, **kwargs)

	Bases: Reducer

Compute autocorrelation of multiple measures (eg YZ velocities) as a
function of a lagging variable (eg time).

Reducer signature:

 PointData -> AutoCorrelation.fit -> PlotlyGrapher2D
 list[PointData] -> AutoCorrelation.fit -> PlotlyGrapher2D
list[np.ndarray] -> AutoCorrelation.fit -> PlotlyGrapher2D

Each sample in the input `PointData` is treated as a separate streamline
/ tracer pass. You can group passes using `Segregate + GroupBy(“label”)`.

Autocorrelation and autocovariance each refer to about 3 different things
in each field. The formula used here, inspired by the VACF in molecular
dynamics and generalised for arbitrary measures, is:

\[C(L_i) = \frac{ \sum_{N} V(L_0) \cdot V(L_i) }{N}\]

i.e. the autocorrelation C at a lag of Li is the average of the dot
products of quantities V for all N tracers. For example, the velocity
autocorrelation function with respect to time would be the average of
vx(0) vx(t) + vy(0) vy(t) + vz(0) vz(t) at a given time t.

The input lag defines the column used as a lagging variable; it can be
given as a named column string (e.g. “t”) or index (e.g. 0).

The input signals define the quantities for which the autocorrelation is
computed, given as a list of column names (e.g. [“vy”, “vz”]) or indices
(e.g. [5, 6]).

The input span, if defined, is the minimum and maximum values for the
lag (e.g. start and end times) for which the autocorrelation will be
computed. By default it is automatically computed as the range of values.

The input num_divisions is the number of lag points between span[0] and
span[1] for which the autocorrelation will be computed.

The max_distance parameter defines the maximum distance allowed between
a lag value and the closest trajectory value for it to be considered.

If normalize is True, then the formula used becomes:

\[C(L_i) = \frac{ \sum_{N} V(L_0) \cdot V(L_i) / V(L_0) \cdot V(L_0)}{N}\]

If preprocess is True, then the times of each tracer pass is taken
relative to its start; only relevant if using time as the lagging variable.

The extra keyword arguments **kwargs are passed to
PlotlyGrapher2D.add_points. You can e.g. set the YAxis limits by adding
ylim = [0, 20].

The extra keyword arguments **kwargs are passed to
plotly.graph_objs.Scatter. You can e.g. set a different colorscheme with
“marker_colorscheme = ‘Viridis’”.

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Velocity(7), # Compute vx, vy, vz
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the AutoCorrelation algorithm can be used to compute the VACF:

>>> from pept.processing import AutoCorrelation
>>> fig = AutoCorrelation("t", ["vx", "vy", "vz"]).fit(streamlines)
>>> fig.show()

The radial velocity autocorrelation can be computed as a function of the
pipe length (X axis as it was reoriented):

>>> entrance = -100
>>> exit = 100
>>> ac = AutoCorrelation("x", ["vy", "vz"], span = [entrance, exit])
>>> ac.fit(streamlines).show()

The raw lags and autocorrelations plotted can be accessed directly:

>>> ac.lags
>>> ac.correlation

The radial location can be autocorrelated with time, then normalised to
show periodic movements (e.g. due to a mixer):

>>> ac = AutoCorrelation("t", ["y", "z"], normalize = True)
>>> ac.fit(streamlines).show()

	
__init__(lag='t', signals=['vx', 'vy', 'vz'], span=None, num_divisions=500, max_distance=10, normalize=False, preprocess=True, **kwargs)

	

Methods

	__init__([lag, signals, span, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.processing.SpatialProjections

	
class pept.processing.SpatialProjections(directory, start, end, dimension='x', num_divisions=500, max_distance=10, colorbar_col=-1, height=1000, width=1000, prefix='frame', **kwargs)

	Bases: Reducer

Project multiple tracer passes onto a moving 2D plane along a given
direction between start and end coordinates, saving each frame in
directory.

Reducer signature:

 PointData -> SpatialProjections.fit -> None
 list[PointData] -> SpatialProjections.fit -> None
list[np.ndarray] -> SpatialProjections.fit -> None

Each sample in the input `PointData` is treated as a separate streamline
/ tracer pass. You can group passes using `Segregate + GroupBy(“label”)`.

The generated images (saved in directory with height x width pixels)
can be stitched into a video using pept.plots.make_video.

The extra keyword arguments **kwargs are passed to the histogram
creation routine pept.plots.histogram. You can e.g. set the YAxis limits
by adding ylim = [0, 20].

New in pept-0.5.1

Examples

Consider a pipe-flow experiment, with tracers moving from side to side in
multiple passes / streamlines. First locate the tracers, then split their
trajectories into each individual pass:

>>> import pept
>>> from pept.tracking import *
>>>
>>> split_pipe = pept.Pipeline([
>>> Segregate(window = 10, max_distance = 20), # Appends label column
>>> GroupBy("label"), # Splits into samples
>>> Reorient(), # Align with X axis
>>> Center(), # Center points at 0
>>> Stack(),
>>>])
>>> streamlines = split_pipe.fit(trajectories)

Now each sample in streamlines corresponds to a single tracer pass, e.g.
streamlines[0] is the first pass, streamlines[1] is the second. The
passes were reoriented and centred such that the pipe is aligned with the
X axis.

Now the RelativeDeviationsLinear reducer can be used to create images of
the mixing between the pipe entrance and exit:

>>> from pept.processing import SpatialProjections
>>> entrance_x = -100 # Pipe data was aligned with X
>>> exit_x = 100
>>> SpatialProjections(
>>> directory = "projections", # Creates directory to save images
>>> start = entrance_x,
>>> end = exit_x,
>>>).fit(streamlines)

Now the directory “projections” was created inside your current working
folder, and eachc projected frame was saved there as “frame0000.png”,
“frame0001.png”, etc. You can stitch all images together into a video using
pept.plots.make_video:

>>> import pept
>>> pept.plots.make_video(
>>> "projections/frame*.png",
>>> output = "projections/video.avi"
>>>)

The raw projections can also be extracted directly:

>>> sp = SpatialProjections(
>>> directory = "projections", # Creates directory to save images
>>> p1 = entrance_x,
>>> p2 = exit_x,
>>>)
>>> sp.fit(streamlines)
>>> sp.projections

	Attributes

	
	projectionslist [https://docs.python.org/3/library/stdtypes.html#list][(N, 5), np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]]
	A list of frames for each division between start and end, with each
frame saving 5 columns [t, x, y, z, colorbar_col].

	
__init__(directory, start, end, dimension='x', num_divisions=500, max_distance=10, colorbar_col=-1, height=1000, width=1000, prefix='frame', **kwargs)

	

Methods

	__init__(directory, start, end[, dimension, ...])

	

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	fit(trajectories[, executor, max_workers, ...])

	

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
fit(trajectories, executor='joblib', max_workers=None, verbose=True)

	

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Visualisation (pept.plots)

PEPT-oriented visulisation tools.

Visualisation functions and classes for PEPT data, transparently working with
both pept base classes and raw NumPy arrays (e.g. PlotlyGrapher.add_lines
handles both pept.LineData and (N, 7) NumPy arrays).

The PlotlyGrapher class creates interactive, publication-ready 3D figures
with optional subplots which can also be exported to portable HTML files. The
PlotlyGrapher2D class is its two-dimensional counterpart, handling e.g.
pept.Pixels.

	pept.plots.format_fig(fig[, size, font, ...])

	Format a Plotly figure to a consistent theme for the Nature Computational Science journal.

	pept.plots.histogram(data[, nbins, ...])

	Create histogram of data with PEPT-relevant defaults for plotly.express.histogram.

	pept.plots.make_video(frames[, output, fps, ...])

	Stitch multiple images from frames into a video saved to output.

	pept.plots.PlotlyGrapher([rows, cols, xlim, ...])

	A class for PEPT data visualisation using Plotly-based 3D graphs.

	pept.plots.PlotlyGrapher2D([rows, cols, ...])

	A class for PEPT data visualisation using Plotly-based 2D graphs.

pept.plots.format_fig

	
pept.plots.format_fig(fig, size=20, font='Computer Modern', template='plotly_white')

	Format a Plotly figure to a consistent theme for the Nature
Computational Science journal.

pept.plots.histogram

	
pept.plots.histogram(data, nbins=None, histnorm='percent', marginal='box', xlim=None, ylim=None, xaxis_title=None, yaxis_title=None, **kwargs)

	Create histogram of data with PEPT-relevant defaults for
plotly.express.histogram.

You can check the official documentation for all available options:
https://plotly.github.io/plotly.py-docs/generated/plotly.express.histogram.html.

	Parameters

	
	data(N,) numpy.ndarray-like
	A 1D vector of values to histogram.

	nbinsint [https://docs.python.org/3/library/functions.html#int], optional
	Positive integer. Sets the number of bins.

	histnormstr [https://docs.python.org/3/library/stdtypes.html#str], default “percent”
	One of ‘percent’, ‘probability’, ‘density’, or ‘probability
density’ If None, the output of histfunc is used as is. If
‘probability’, the output of histfunc for a given bin is divided by
the sum of the output of histfunc for all bins. If ‘percent’, the
output of histfunc for a given bin is divided by the sum of the
output of histfunc for all bins and multiplied by 100. If
‘density’, the output of histfunc for a given bin is divided by the
size of the bin. If ‘probability density’, the output of histfunc
for a given bin is normalized such that it corresponds to the
probability that a random event whose distribution is described by the
output of histfunc will fall into that bin.

	marginalstr [https://docs.python.org/3/library/stdtypes.html#str], default “box”
	One of ‘rug’, ‘box’, ‘violin’, or ‘histogram’. If set, a
subplot is drawn alongside the main plot, visualizing the distribution.

	xlimlist [https://docs.python.org/3/library/stdtypes.html#list] of two numbers [https://docs.python.org/3/library/numbers.html#module-numbers], optional
	If provided, overrides auto-scaling on the x-axis in cartesian
coordinates.

	ylimlist [https://docs.python.org/3/library/stdtypes.html#list] of two numbers [https://docs.python.org/3/library/numbers.html#module-numbers], optional
	If provided, overrides auto-scaling on the y-axis in cartesian
coordinates.

	xaxis_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	X-axis label.

	yaxis_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	Y-axis label.

pept.plots.make_video

	
pept.plots.make_video(frames, output='video.avi', fps=10, verbose=True)

	Stitch multiple images from frames into a video saved to output.

	Parameters

	
	framesstr [https://docs.python.org/3/library/stdtypes.html#str] or list [https://docs.python.org/3/library/stdtypes.html#list][str [https://docs.python.org/3/library/stdtypes.html#str]]
	Either a prefix for the frame names (e.g. “directory/frame*.png”) or
a list of paths to individual frames.

	outputstr [https://docs.python.org/3/library/stdtypes.html#str], default “video.avi”
	Name of output video.

	fpsint [https://docs.python.org/3/library/functions.html#int], default 10
	Number of frames per second.

Examples

Stitch all files matching a glob prefix:
>>> from pept.plots import make_video
>>> make_video(“lacey/frame*.png”, “lacey/video.avi”)

Stitch individual files:
>>> make_video([“frame0.png”, “frame1.png”, “frame2.png”])

pept.plots.PlotlyGrapher

	
class pept.plots.PlotlyGrapher(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])

	Bases: PEPTObject

A class for PEPT data visualisation using Plotly-based 3D graphs.

The PlotlyGrapher class can create and automatically configure an
arbitrary number of 3D subplots for PEPT data visualisation. They are by
default set to use the alternative PEPT 3D axes convention - having the
y-axis pointing upwards, such that the vertical screens of a PEPT scanner
represent the xy-plane.

This class can be used to draw 3D scatter or line plots, with optional
colour-coding using extra data columns (e.g. relative tracer activity or
trajectory label).

It also provides easy access to the most common configuration parameters
for the plots, such as axes limits, subplot titles, colorbar titles, etc.
It can work with pre-computed Plotly traces (such as the ones from the
pept base classes), as well as with numpy arrays.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If xlim, ylim or zlim are not lists of length 2.

Examples

The figure is created when instantiating the class.

>>> grapher = PlotlyGrapher()
>>> lors = LineData(raw_lors...) # Some example lines
>>> points = PointData(raw_points...) # Some example points

Creating a trace based on a numpy array:

>>> sample_lors = lors[0] # A numpy array of a single sample
>>> sample_points = points[0]
>>> grapher.add_lines(sample_lors)
>>> grapher.add_points(sample_points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default
Plotly renderer:

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher.lines_trace(lines)
>>> PlotlyGrapher.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines
methods.

	Attributes

	
	xlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is the
upper limit of the x-axis of all the subplots.

	ylimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is the
upper limit of the y-axis of all the subplots.

	zlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list of length 2, formatted as [z_min, z_max], where z_min is
the lower limit of the z-axis of all the subplots and z_max is the
upper limit of the z-axis of all the subplots.

	figPlotly.Figure instance
	A Plotly.Figure instance, with any number of subplots (as defined by
rows and cols) pre-configured for PEPT data.

	
__init__(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])

	PlotlyGrapher class constructor.

	Parameters

	
	rowsint [https://docs.python.org/3/library/functions.html#int], optional
	The number of rows of subplots. The default is 1.

	colsint [https://docs.python.org/3/library/functions.html#int], optional
	The number of columns of subplots. The default is 1.

	xlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is
the upper limit of the x-axis of all the subplots.

	ylimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is
the upper limit of the y-axis of all the subplots.

	zlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	A list of length 2, formatted as [z_min, z_max], where z_min is
the lower limit of the z-axis of all the subplots and z_max is
the upper limit of the z-axis of all the subplots.

	subplot_titleslist [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], default [” “]
	A list of the titles of the subplots - e.g. [“plot a)”, “plot b)”].
The default is a list of empty strings.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If rows < 1 or cols < 1.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If xlim, ylim or zlim are not lists of length 2.

Methods

	__init__([rows, cols, xlim, ylim, zlim, ...])

	PlotlyGrapher class constructor.

	add_lines(lines[, row, col, width, color, ...])

	Create and plot a trace for all the lines in a numpy array or pept.LineData, with possible color-coding.

	add_pixels(pixels[, row, col, condition, ...])

	Create and plot a trace with all the pixels in this class, with possible filtering.

	add_points(points[, row, col, size, color, ...])

	Create and plot a trace for all the points in a numpy array or pept.PointData, with possible color-coding.

	add_trace(trace[, row, col])

	Add a precomputed Plotly trace to a given subplot.

	add_traces(traces[, row, col])

	Add a list of precomputed Plotly traces to a given subplot.

	add_voxels(voxels[, row, col, condition, ...])

	Create and plot a trace for all the voxels in a pept.Voxels instance, with possible filtering.

	copy([deep])

	Create a deep copy of an instance of this class, including all inner attributes.

	create_figure()

	Create a Plotly figure, pre-configured for PEPT data.

	equalise_axes()

	Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data plotted is within the plotted bounds.

	lines_trace(lines[, width, color, opacity, ...])

	Static method for creating a Plotly trace of lines.

	load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

	points_trace(points[, size, color, opacity, ...])

	Static method for creating a Plotly trace of points.

	save(filepath)

	Save a PEPTObject instance as a binary pickle object.

	show([equal_axes])

	Show the Plotly figure, optionally setting equal axes limits.

	to_html(filepath[, equal_axes, include_plotlyjs])

	Save the current Plotly figure as a self-contained HTML webpage.

	xlabel(label[, row, col])

	

	ylabel(label[, row, col])

	

	zlabel(label[, row, col])

	

Attributes

	fig

	

	xlim

	

	ylim

	

	zlim

	

	
create_figure()

	Create a Plotly figure, pre-configured for PEPT data.

This function creates a Plotly figure with an arbitrary number of
subplots, as given in the class instantiation call. It configures them
to have the y-axis pointing upwards, as per the PEPT 3D axes
convention. It also sets the axes limits and labels.

	Returns

	
	figPlotly Figure instance
	A Plotly Figure instance, with any number of subplots (as defined
when instantiating the class) pre-configured for PEPT data.

	
property xlim

	

	
property ylim

	

	
property zlim

	

	
property fig

	

	
xlabel(label, row=1, col=1)

	

	
ylabel(label, row=1, col=1)

	

	
zlabel(label, row=1, col=1)

	

	
static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Static method for creating a Plotly trace of points. See
PlotlyGrapher.add_points for the full documentation.

	
add_points(points, row=1, col=1, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Create and plot a trace for all the points in a numpy array or
pept.PointData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the points
included in the numpy array or pept.PointData instance (or subclass
thereof!) points and adds it to the subplot determined by row and
col.

The expected data row is [time, x1, y1, z1, …].

	Parameters

	
	points(M, N >= 4) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.PointData
	The expected data columns are: [time, x1, y1, z1, etc.]. If a
pept.PointData instance (or subclass thereof) is received, the
inner points will be used.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	sizefloat [https://docs.python.org/3/library/functions.html#float], default 2.0
	The marker size of the points.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.8
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default -1
	The column in points that will be used to color the points. Only
has an effect if colorbar is set to True. The default is -1 (the
last column).

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the colorbar_col column in the
input data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None)
and there are fewer than 10 unique values in the colorbar_col column
in points, then the points for each unique label will be added as
separate traces.

This is helpful for cases such as when plotting points with labelled
trajectories, as when there are fewer than 10 trajectories, the
distinct colours automatically used by Plotly when adding multiple
traces allow the points to be better distinguished.

Examples

Add an array of points (data columns: [time, x, y, z]) to a
PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_points(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_points(point_data)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you
can plot every 10th point using slices:

>>> pts = np.array(...) # shape (N, M >= 4), N very large
>>> grapher.add_points(pts[::10])

	
static lines_trace(lines, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0, colorscale='Magma', colorbar_title=None)

	Static method for creating a Plotly trace of lines. See
PlotlyGrapher.add_lines for the full documentation.

	
add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0, colorscale='Magma', colorbar_title=None)

	Create and plot a trace for all the lines in a numpy array or
pept.LineData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the lines
included in the numpy array or pept.LineData instance (or subclass
thereof!) lines and adds it to the subplot determined by row and
col.

It expects LoR-like data, where each line is defined by two points. The
expected data columns are [time, x1, y1, z1, x2, y2, z2, …].

	Parameters

	
	lines(M, N >= 7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.LineData
	The expected data columns: [time, x1, y1, z1, x2, y2, z2, etc.]. If
a pept.LineData instance (or subclass thereof) is received, the
inner lines will be used.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	widthfloat [https://docs.python.org/3/library/functions.html#float], default 2.0
	The width of the lines.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.6
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the data in the lines column
colorbar_col. Is overridden if color is set. The default is
True, so that every line has a different color.

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default 0
	The column in the data samples that will be used to color the
points. Only has an effect if colorbar is set to True. The
default is 0 (the first column - time).

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the colorbar_col column in the
input data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If lines is not a numpy.ndarray with shape (M, N), where N >= 7.

Examples

Add an array of lines (data columns: [t, x1, y1, z1, x2, y2, z2]) to a
PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines_raw = np.array(...) # shape (N, M >= 7)
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

Add all the lines in a LineData instance:

>>> line_data = pept.LineData(...) # Some example data
>>> grapher.add_lines(line_data)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot
every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 7), N very large
>>> grapher.add_lines(lines_raw[::10])

	
add_pixels(pixels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, opacity=0.9, colorscale='Magma')

	Create and plot a trace with all the pixels in this class, with
possible filtering.

Creates a plotly.graph_objects.Surface object for the centres of
all pixels encapsulated in a pept.Pixels instance, colour-coding the
pixel value.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all pixels that have a value larger
than 0.

	Parameters

	
	pixelspept.Pixels
	The pixel space, encapsulated in a pept.Pixels instance (or
subclass thereof). Only pept.Pixels are accepted as raw pixels on
their own do not contain data about the spatial coordinates of the
pixel box.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	conditionfunction, default lambda pixels: pixels > 0
	The filtering function applied to the pixel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all pixels that
should be plotted. The default, lambda x: x > 0 selects all
pixels which have a value larger than 0.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.4
	The opacity of the surface, where 0 is transparent and 1 is fully
opaque.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(pixels.pixels_trace())
>>> grapher.show()

	
add_voxels(voxels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, size=4, color=None, opacity=0.4, colorbar=True, colorscale='Magma', colorbar_title=None)

	Create and plot a trace for all the voxels in a pept.Voxels
instance, with possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of
all voxels encapsulated in a pept.Voxels instance, colour-coding the
voxel value. The trace is added to the subplot determined by row and
col.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all voxels that have a value larger
than 0.

	Parameters

	
	voxelspept.Voxels
	The voxel space, encapsulated in a pept.Voxels object.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	conditionfunction, default lambda voxel_data: voxel_data > 0
	The filtering function applied to the voxel data before plotting
it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all voxels that
should be plotted. The default, lambda x: x > 0 selects all
voxels which have a value larger than 0.

	sizefloat [https://docs.python.org/3/library/functions.html#float], default 4
	The size of the plotted voxel points. Note that due to the large
number of voxels in typical applications, the voxel centres are
plotted as square points, which provides an easy to understand
image that is also fast and responsive.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.4
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the voxel values. Is overridden if
color is set.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the voxel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError]
	If voxels is not an instance of pept.Voxels or subclass
thereof.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_voxels(voxels)
>>> grapher.show()

	
add_trace(trace, row=1, col=1)

	Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

	Parameters

	
	tracePlotly trace [https://docs.python.org/3/library/trace.html#module-trace] (Scatter3d)
	A precomputed Plotly trace

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	
add_traces(traces, row=1, col=1)

	Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

	Parameters

	
	traceslist [https://docs.python.org/3/library/stdtypes.html#list] [Plotly trace [https://docs.python.org/3/library/trace.html#module-trace] (Scatter3d)]
	A list of precomputed Plotly traces

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add the traces to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add the traces to.

	
equalise_axes()

	Equalise the axes of all subplots by setting the system limits
xlim and ylim to equal values, such that all data plotted is
within the plotted bounds.

	
copy(deep=True)

	Create a deep copy of an instance of this class, including all
inner attributes.

	
static load(filepath)

	Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

	Returns

	
	pept.PEPTObject subclass instance
	The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
save(filepath)

	Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a
portable binary format. Load back the object using the load method.

	Parameters

	
	filepathfilename or file handle
	If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

	
show(equal_axes=True)

	Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer
(e.g. browser, or PDF). The available renderers can be found by running
the following code:

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

	Parameters

	
	equal_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Set xlim, ylim, zlim to equal ranges such that the axes
limits are equalised. Only has an effect if xlim, ylim and
zlim are all None. If False, the default Plotly behaviour is
used (i.e. automatically use min, max for each dimension).

	
to_html(filepath, equal_axes=True, include_plotlyjs=True)

	Save the current Plotly figure as a self-contained HTML webpage.

	Parameters

	
	filepathstr [https://docs.python.org/3/library/stdtypes.html#str] or writeable
	Path or open file descriptor to save the HTML file to.

	equal_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Set xlim, ylim to equal ranges such that the axes limits are
equalised. Only has an effect if both xlim and ylim are None.
If False, the default Plotly behaviour is used (i.e.
automatically use min, max for each dimension).

	include_plotlyjsTrue [https://docs.python.org/3/library/constants.html#True] or “cdn”, default True [https://docs.python.org/3/library/constants.html#True]
	If True, embed the Plotly.JS library in the HTML file, allowing
the graph to be shown offline, but adding 3 MB. If “cdn”, the
Plotly.JS library will be downloaded dynamically.

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the
figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.plots.PlotlyGrapher2D

	
class pept.plots.PlotlyGrapher2D(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A class for PEPT data visualisation using Plotly-based 2D graphs.

The PlotlyGrapher class can create and automatically configure an
arbitrary number of 2D subplots for PEPT data visualisation.

This class can be used to draw 2D scatter or line plots, with optional
colour-coding using extra data columns (e.g. relative tracer activity or
trajectory label).

It also provides easy access to the most common configuration parameters
for the plots, such as axes limits, subplot titles, colorbar titles, etc.
It can work with pre-computed Plotly traces (such as the ones from the
pept base classes), as well as with numpy arrays.

Examples

The figure is created when instantiating the class.

>>> import numpy as np
>>> from pept.visualisation import PlotlyGrapher2D

>>> grapher = PlotlyGrapher2D()
>>> lines = np.random.random((100, 5)) # columns [t, x1, y1, x2, y2]
>>> points = np.random.random((100, 3)) # columns [t, x, y]

Creating a trace based on a numpy array:

>>> grapher.add_lines(lines)
>>> grapher.add_points(points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default
Plotly renderer:

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher2D.lines_trace(lines)
>>> PlotlyGrapher2D.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines
methods.

	Attributes

	
	xlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is the
upper limit of the x-axis of all the subplots.

	ylimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is the
upper limit of the y-axis of all the subplots.

	figPlotly.Figure instance
	A Plotly.Figure instance, with any number of subplots (as defined by
rows and cols) pre-configured for PEPT data.

	
__init__(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)

	PlotlyGrapher class constructor.

	Parameters

	
	rowsint [https://docs.python.org/3/library/functions.html#int], optional
	The number of rows of subplots. The default is 1.

	colsint [https://docs.python.org/3/library/functions.html#int], optional
	The number of columns of subplots. The default is 1.

	xlimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	A list of length 2, formatted as [x_min, x_max], where x_min is
the lower limit of the x-axis of all the subplots and x_max is
the upper limit of the x-axis of all the subplots.

	ylimlist [https://docs.python.org/3/library/stdtypes.html#list] or numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray], optional
	A list of length 2, formatted as [y_min, y_max], where y_min is
the lower limit of the y-axis of all the subplots and y_max is
the upper limit of the y-axis of all the subplots.

	subplot_titleslist [https://docs.python.org/3/library/stdtypes.html#list] of str [https://docs.python.org/3/library/stdtypes.html#str], default [” “]
	A list of the titles of the subplots - e.g. [“plot a)”, “plot b)”].
The default is a list of empty strings.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If rows < 1 or cols < 1.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If xlim or ylim are not lists of length 2.

Methods

	__init__([rows, cols, xlim, ylim, ...])

	PlotlyGrapher class constructor.

	add_image(image, **kwargs)

	Create and plot a go.Image trace.

	add_lines(lines[, row, col, width, color, ...])

	Create and plot a trace for all the lines in a numpy array, with possible color-coding.

	add_pixels(pixels[, row, col, colorscale, ...])

	Create and plot a trace with all the pixels in this class, with possible filtering.

	add_points(points[, row, col, size, color, ...])

	Create and plot a trace for all the points in a numpy array, with possible color-coding.

	add_timeseries(points[, rows_cols, size, ...])

	Add a timeseries plot for each dimension in points vs.

	add_trace(trace[, row, col])

	Add a precomputed Plotly trace to a given subplot.

	add_traces(traces[, row, col])

	Add a list of precomputed Plotly traces to a given subplot.

	create_figure(**kwargs)

	Create a Plotly figure, pre-configured for PEPT data.

	equalise_axes()

	Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data plotted is within the plotted bounds.

	equalise_separate()

	Equalise the axes of all subplots individually by setting the system limits in each dimension to equal values, such that all data plotted is within the plotted bounds.

	lines_trace(lines[, width, color, opacity])

	Static method for creating a Plotly trace of lines.

	points_trace(points[, size, color, opacity, ...])

	Static method for creating a Plotly trace of points.

	show([equal_axes])

	Show the Plotly figure, optionally setting equal axes limits.

	timeseries_trace(points[, size, color, ...])

	Static method for creating a list of 3 Plotly traces of timeseries.

	to_html(filepath[, equal_axes, include_plotlyjs])

	Save the current Plotly figure as a self-contained HTML webpage.

	xlabel(label[, row, col])

	

	ylabel(label[, row, col])

	

Attributes

	fig

	

	xlim

	

	ylim

	

	
create_figure(**kwargs)

	Create a Plotly figure, pre-configured for PEPT data.

This function creates a Plotly figure with an arbitrary number of
subplots, as given in the class instantiation call.

	Returns

	
	figPlotly Figure instance
	A Plotly Figure instance, with any number of subplots (as defined
when instantiating the class) pre-configured for PEPT data.

	
property xlim

	

	
property ylim

	

	
xlabel(label, row=1, col=1)

	

	
ylabel(label, row=1, col=1)

	

	
property fig

	

	
static timeseries_trace(points, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Static method for creating a list of 3 Plotly traces of timeseries.
See PlotlyGrapher2D.add_timeseries for the full documentation.

	
add_timeseries(points, rows_cols=[(1, 1), (2, 1), (3, 1)], size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Add a timeseries plot for each dimension in points vs. time.

If the current PlotlyGrapher2D figure does not have enough rows and
columns to accommodate the three subplots (at coordinates rows_cols),
the inner figure will be regenerated with enough rows and columns.

	Parameters

	
	points(M, N >= 4) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray] or pept.PointData
	The expected data columns are: [time, x1, y1, z1, etc.]. If a
pept.PointData instance (or subclass thereof) is received, the
inner points will be used.

	rows_colslist [https://docs.python.org/3/library/stdtypes.html#list][tuple [https://docs.python.org/3/library/stdtypes.html#tuple][2]]
	A list with 3 tuples, each tuple containing the subplot indices
to plot the x, y, and z coordinates (indexed from 1).

	sizefloat [https://docs.python.org/3/library/functions.html#float], default 6.0
	The marker size of the points.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.8
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default -1
	The column in points that will be used to color the points. Only
has an effect if colorbar is set to True. The default is -1 (the
last column).

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the colorbar_col column in the
input data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None)
and there are fewer than 10 unique values in the colorbar_col column
in points, then the points for each unique label will be added as
separate traces.

This is helpful for cases such as when plotting points with labelled
trajectories, as when there are fewer than 10 trajectories, the
distinct colours automatically used by Plotly when adding multiple
traces allow the points to be better distinguished.

Examples

Add an array of 3D points (data columns: [time, x, y, z]) to a
PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_timeseries(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_timeseries(point_data)
>>> grapher.show()

	
static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Static method for creating a Plotly trace of points. See
PlotlyGrapher2D.add_points for the full documentation.

	
add_points(points, row=1, col=1, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=-1, colorscale='Magma', colorbar_title=None, **kwargs)

	Create and plot a trace for all the points in a numpy array, with
possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the points
included in the numpy array points and adds it to the subplot
selected by row and col.

The expected data columns are [time, x1, y1, …].

	Parameters

	
	points(M, N >= 2) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	Points to plot. The expected data columns are: [t, x1, y1, etc.].

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	sizefloat [https://docs.python.org/3/library/functions.html#float], default 2.0
	The marker size of the points.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”) or a
colorbar list. Overrides colorbar if set. For more information,
check the Plotly documentation. The default is None.

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.8
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	colorbarbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

	colorbar_colint [https://docs.python.org/3/library/functions.html#int], default -1
	The column in points that will be used to color the points. Only
has an effect if colorbar is set to True. The default is -1 (the
last column).

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the colorbar_col column in the
input data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	colorbar_titlestr [https://docs.python.org/3/library/stdtypes.html#str], optional
	If set, the colorbar will have this title above it.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If points is not a numpy.ndarray with shape (M, N), where N >= 3.

Examples

Add an array of points (data columns: [time, x, y]) to a
PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.random.random((10, 3))
>>> grapher.add_points(points_raw)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you
can plot every 10th point using slices:

>>> pts = np.array(...) # shape (N, M >= 3), N very large
>>> grapher.add_points(pts[::10])

	
static lines_trace(lines, width=2.0, color=None, opacity=0.6, **kwargs)

	Static method for creating a Plotly trace of lines. See
PlotlyGrapher2D.add_lines for the full documentation.

	
add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6, **kwargs)

	Create and plot a trace for all the lines in a numpy array, with
possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the lines
included in the numpy array lines and adds it to the subplot
determined by row and col.

It expects LoR-like data, where each line is defined by two points. The
expected data columns are [x1, y1, x2, y2, …].

	Parameters

	
	lines(M, N >= 5) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The expected data columns are: [time, x1, y1, x2, y2, etc.].

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	widthfloat [https://docs.python.org/3/library/functions.html#float], default 2.0
	The width of the lines.

	colorstr [https://docs.python.org/3/library/stdtypes.html#str] or list-like, optional
	Can be a single color (e.g. “black”, “rgb(122, 15, 241)”).

	opacityfloat [https://docs.python.org/3/library/functions.html#float], default 0.6
	The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If lines is not a numpy.ndarray with shape (M, N), where N >= 5.

Examples

Add an array of lines (data columns: [time, x1, y1, x2, y2]) to a
PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines_raw = np.random.random((100, 5))
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot
every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 5), N very large
>>> grapher.add_lines(lines_raw[::10])

	
add_pixels(pixels, row=1, col=1, colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0, **kwargs)

	Create and plot a trace with all the pixels in this class, with
possible filtering.

Creates a plotly.graph_objects.Heatmap object for the centres of
all pixels encapsulated in a pept.Pixels instance, colour-coding the
pixel value.

The condition parameter is a filtering function that should return
a boolean mask (i.e. it is the result of a condition evaluation). For
example lambda x: x > 0 selects all pixels that have a value larger
than 0.

	Parameters

	
	pixelspept.Pixels
	The pixel space, encapsulated in a pept.Pixels instance (or
subclass thereof). Only pept.Pixels are accepted as raw pixels on
their own do not contain data about the spatial coordinates of the
pixel box.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	colorscalestr [https://docs.python.org/3/library/stdtypes.html#str], default “Magma”
	The Plotly scheme for color-coding the pixel values in the input
data. Typical ones include “Cividis”, “Viridis” and “Magma”.
A full list is given at plotly.com/python/builtin-colorscales/.
Only has an effect if colorbar = True and color is not set.

	transposebool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Transpose the heatmap (i.e. flip it across its diagonal).

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_pixels(pixels)
>>> grapher.show()

	
add_image(image, **kwargs)

	Create and plot a go.Image trace.

	Parameters

	
	image(width, height, 3 or 4) np.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An image with 3 (RGB) or 4 (RGBA) channels.

	**kwargskeyword [https://docs.python.org/3/library/keyword.html#module-keyword] arguments
	Other arguments to be passed to the plotly.graph_objs.Image
constructor.

	
add_trace(trace, row=1, col=1)

	Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

	Parameters

	
	tracePlotly trace [https://docs.python.org/3/library/trace.html#module-trace]
	A precomputed Plotly trace.

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add a trace to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add a trace to.

	
add_traces(traces, row=1, col=1)

	Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

	Parameters

	
	traceslist [https://docs.python.org/3/library/stdtypes.html#list] [Plotly trace [https://docs.python.org/3/library/trace.html#module-trace]]
	A list of precomputed Plotly traces

	rowint [https://docs.python.org/3/library/functions.html#int], default 1
	The row of the subplot to add the traces to.

	colint [https://docs.python.org/3/library/functions.html#int], default 1
	The column of the subplot to add the traces to.

	
equalise_axes()

	Equalise the axes of all subplots by setting the system limits
xlim and ylim to equal values, such that all data plotted is
within the plotted bounds.

	
equalise_separate()

	Equalise the axes of all subplots individually by setting the
system limits in each dimension to equal values, such that all data
plotted is within the plotted bounds.

	
show(equal_axes=True)

	Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer
(e.g. browser, or PDF). The available renderers can be found by running
the following code:

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

	Parameters

	
	equal_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Set xlim, ylim to equal ranges such that the axes limits are
equalised. Only has an effect if both xlim and ylim are None.
If False, the default Plotly behaviour is used (i.e.
automatically use min, max for each dimension).

	
to_html(filepath, equal_axes=True, include_plotlyjs=True)

	Save the current Plotly figure as a self-contained HTML webpage.

	Parameters

	
	filepathstr [https://docs.python.org/3/library/stdtypes.html#str] or writeable
	Path or open file descriptor to save the HTML file to.

	equal_axesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	Set xlim, ylim to equal ranges such that the axes limits are
equalised. Only has an effect if both xlim and ylim are None.
If False, the default Plotly behaviour is used (i.e.
automatically use min, max for each dimension).

	include_plotlyjsTrue [https://docs.python.org/3/library/constants.html#True] or “cdn”, default True [https://docs.python.org/3/library/constants.html#True]
	If True, embed the Plotly.JS library in the HTML file, allowing
the graph to be shown offline, but adding 3 MB. If “cdn”, the
Plotly.JS library will be downloaded dynamically.

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the
figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.utilities

PEPT-oriented utility functions.

The utility functions include low-level optimised Cython functions (e.g.
find_cutpoints) that are of common interest across the pept package, as
well as I/O functions, parallel maps and pixel/voxel traversal algorithms.

Even though the functions are grouped in directories (subpackages) and files
(modules), unlike the rest of the package, they are all imported into the
pept.utilities root, so that their import paths are not too long.

	pept.utilities.find_cutpoints(const double[, ...)

	Compute the cutpoints from a given array of lines.

	pept.utilities.find_minpoints(const double[, ...)

	Compute the minimum distance points (MDPs) from all combinations of num_lines lines given in an array of lines sample_lines.

	pept.utilities.group_by_column(data_array, ...)

	Group the rows in a 2D data_array based on the unique values in a given column_to_separate, returning the groups as a list of numpy arrays.

	pept.utilities.number_of_lines(...)

	Return the number of lines (or rows) in a file.

	pept.utilities.read_csv(filepath_or_buffer)

	Read a given number of lines from a file and return a numpy array of the values.

	pept.utilities.read_csv_chunks(...[, ...])

	Read chunks of data from a file lazily, returning numpy arrays of the values.

	pept.utilities.parallel_map_file(func, ...)

	Utility for parallelising (read CSV chunk -> process chunk) workflows.

	pept.utilities.traverse2d(double[, , ...)

	Fast pixel traversal for 2D lines (or LoRs).

	pept.utilities.traverse3d(double[, , , ...)

	Fast voxel traversal for 3D lines (or LoRs).

	pept.utilities.ChunkReader(...[, skiprows, ...])

	Class for fast, on-demand reading / parsing and iteration over chunks of data from CSV files.

pept.utilities.find_cutpoints

	
pept.utilities.find_cutpoints(const double[:, :] sample_lines, double max_distance, const double[:] cutoffs, bool append_indices=0)

	Compute the cutpoints from a given array of lines.

Function signature:
 find_cutpoints(
 double[:, :] sample_lines, # LoRs in sample
 double max_distance, # Max distance between two LoRs
 double[:] cutoffs, # Spatial cutoff for cutpoints
 bint append_indices = False # Append LoR indices used
)

This is a low-level Cython function that does not do any checks on the
input data - it is meant to be used in other modules / libraries. For a
normal user, the pept.tracking.peptml function find_cutpoints and
class Cutpoints are recommended as higher-level APIs. They do check the
input data and are easier to use (for example, they automatically compute
the cutoffs).

A cutpoint is the point in 3D space that minimises the distance between any
two lines. For any two non-parallel 3D lines, this point corresponds to the
midpoint of the unique segment that is perpendicular to both lines.

This function considers every pair of lines in sample_lines and returns
all the cutpoints that satisfy the following conditions:

	The distance between the two lines is smaller than max_distance.

	The cutpoints are within the cutoffs.

	Parameters

	
	sample_lines(N, M >= 7) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	The sample of lines, where each row is [time, x1, y1, z1, x2, y2, z2],
containing two points [x1, y1, z1] and [x2, y2, z2] defining an LoR.

	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum distance between two LoRs for their cutpoint to be
considered.

	cutoffs(6,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	Only consider the cutpoints that fall within the cutoffs. cutoffs has
the format [min_x, max_x, min_y, max_y, min_z, max_z].

	append_indicesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], optional
	If set to True, the indices of the individual LoRs that were used
to compute each cutpoint is also appended to the returned array.
Default is False.

	Returns

	
	cutpoints(M, 4) or (M, 6) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A numpy array of the calculated weighted cutpoints. If append_indices
is False, then the columns are [time, x, y, z]. If append_indices
is True, then the columns are [time, x, y, z, i, j], where i and
j are the LoR indices from sample_lines that were used to compute
the cutpoints. The time is the average between the timestamps of the
two LoRs that were used to compute the cutpoint. The first column (for
time) is sorted.

Examples

>>> import numpy as np
>>> from pept.utilities import find_cutpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> cutpoints = find_cutpoints(lines, max_distance, cutoffs)

pept.utilities.find_minpoints

	
pept.utilities.find_minpoints(const double[:, :] sample_lines, Py_ssize_t num_lines, double max_distance, const double[:] cutoffs, bool append_indices=0)

	Compute the minimum distance points (MDPs) from all combinations of
num_lines lines given in an array of lines sample_lines.

Function signature:
 find_minpoints(
 double[:, :] sample_lines, # LoRs in sample
 Py_ssize_t num_lines, # Number of LoRs in combinations
 double max_distance, # Max distance from MDP to LoRs
 double[:] cutoffs, # Spatial cutoff for minpoints
 bool append_indices = 0 # Append LoR indices used
)

Given a sample of lines, this functions computes the minimum distance
points (MDPs) for every possible combination of num_lines lines. The
returned numpy array contains all MDPs that satisfy the following:

	Are within the cutoffs.

	Are closer to all the constituent LoRs than max_distance.

	Parameters

	
	sample_lines(M, N) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 2D array of lines, where each line is defined by two points such that
every row is formatted as [t, x1, y1, z1, x2, y2, z2, etc.]. It
must have at least 2 lines and the combination size num_lines
must be smaller or equal to the number of lines. Put differently:
2 <= num_lines <= len(sample_lines).

	num_linesint [https://docs.python.org/3/library/functions.html#int]
	The number of lines in each combination of LoRs used to compute the
MDP. This function considers every combination of numlines from the
input sample_lines. It must be smaller or equal to the number of input
lines sample_lines.

	max_distancefloat [https://docs.python.org/3/library/functions.html#float]
	The maximum allowed distance between an MDP and its constituent lines.
If any distance from the MDP to one of its lines is larger than
max_distance, the MDP is thrown away.

	cutoffs(6,) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	An array of spatial cutoff coordinates with exactly 6 elements as
[x_min, x_max, y_min, y_max, z_min, z_max]. If any MDP lies outside
this region, it is thrown away.

	append_indicesbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values]
	A boolean specifying whether to include the indices of the lines used
to compute each MDP. If False, the output array will only contain the
[time, x, y, z] of the MDPs. If True, the output array will have
extra columns [time, x, y, z, line_idx(1), …, line_idx(n)] where
n = num_lines.

	Returns

	
	minpoints(M, N) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A 2D array of float`s containing the time and coordinates of the MDPs
[time, x, y, z]. The time is computed as the average of the constituent
lines. If `append_indices is True, then num_lines indices of the
constituent lines are appended as extra columns:
[time, x, y, z, line_idx1, line_idx2, ..].

Notes

There must be at least two lines in sample_lines and num_lines must be
greater or equal to the number of lines (i.e. len(sample_lines)).
Put another way: 2 <= num_lines <= len(sample_lines).

This is a low-level Cython function that does not do any checks on the
input data - it is meant to be used in other modules / libraries. For a
normal user, the pept.tracking.peptml function find_minpoints and
class Minpoints are recommended as higher-level APIs. They do check the
input data and are easier to use (for example, they automatically compute
the cutoffs).

Examples

>>> import numpy as np
>>> from pept.utilities import find_minpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> num_lines = 3
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> minpoints = find_minpoints(lines, num_lines, max_distance, cutoffs)

pept.utilities.group_by_column

	
pept.utilities.group_by_column(data_array, column_to_separate)

	Group the rows in a 2D data_array based on the unique values in a
given column_to_separate, returning the groups as a list of numpy arrays.

	Parameters

	
	data_array(M, N) numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A generic 2D numpy array-like (will be converted using numpy.asarray).

	column_to_separateint [https://docs.python.org/3/library/functions.html#int]
	The column index in data_array from which the unique values will be
used for grouping.

	Returns

	
	groupslist [https://docs.python.org/3/library/stdtypes.html#list] of numpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray]
	A list whose elements are 2D numpy arrays - these are sub-arrays from
data_array for which the entries in the column column_to_separate
are the same.

	Raises

	
	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError]
	If data_array does not have exactly 2 dimensions.

Examples

Separate a 6x3 numpy array based on the last column:

>>> x = np.array([
>>> [1, 2, 1],
>>> [5, 3, 1],
>>> [1, 1, 2],
>>> [5, 2, 1],
>>> [2, 4, 2]
>>>])
>>> x_sep = pept.utilities.group_by_column(x, -1)
>>> x_sep
>>> [array([[1, 2, 1],
>>> [5, 3, 1],
>>> [5, 2, 1]]),
>>> array([[1, 1, 2],
>>> [2, 4, 2]])]

pept.utilities.number_of_lines

	
pept.utilities.number_of_lines(filepath_or_buffer)

	Return the number of lines (or rows) in a file.

	Parameters

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Path to the file.

	Returns

	
	int [https://docs.python.org/3/library/functions.html#int]
	The number of lines in the file pointed at by filepath_or_buffer.

pept.utilities.read_csv

	
pept.utilities.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

	Read a given number of lines from a file and return a numpy array of the
values.

This is a convenience function that’s simply a proxy to pandas.read_csv,
configured with default parameters for fast reading and parsing of usual
PEPT data.

Most importantly, it reads from a space-separated values file at
filepath_or_buffer, optionally skipping skiprows lines and reading in
nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing.
The descriptions below are taken from the pandas documentation.

	Parameters

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv. If
you want to pass in a path object, pandas accepts any os.PathLike. By
file-like object, we refer to objects with a read() method, such as a
file handler (e.g. via builtin open function) or StringIO.

	skiprowslist-like, int [https://docs.python.org/3/library/functions.html#int] or callable() [https://docs.python.org/3/library/functions.html#callable], optional
	Line numbers to skip (0-indexed) or number of lines to skip (int) at
the start of the file.

	nrowsint [https://docs.python.org/3/library/functions.html#int], optional
	Number of rows of file to read. Useful for reading pieces of large
files.

	dtypeType name, default float
	Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32,
‘c’: ‘Int64’}.

	sepstr [https://docs.python.org/3/library/stdtypes.html#str], default “s+”
	Delimiter to use. Separators longer than 1 character and different from
‘s+’ will be interpreted as regular expressions and will also force
the use of the Python parsing engine.

	headerint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int], “infer”, optional
	Row number(s) to use as the column names, and the start of the data. By
default assume there is no header present (i.e. header = None).

	engine{‘c’, ‘python’}, default “c”
	Parser engine to use. The C engine is faster while the python engine is
currently more feature-complete.

	na_filterbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True
	Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can
improve the performance of reading a large file.

	quotingint [https://docs.python.org/3/library/functions.html#int] or csv.QUOTE_* instance, default csv.QUOTE_NONE
	Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

	memory_mapbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using
this option can improve performance because there is no longer any I/O
overhead.

	**kwargsoptional
	Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.read_csv_chunks

	
pept.utilities.read_csv_chunks(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

	Read chunks of data from a file lazily, returning numpy arrays of the
values.

This function returns a generator - an object that can be iterated over
once, creating data on-demand. This means that chunks of data will be
read only when being accessed, making it a more efficient alternative to
read_csv for large files (> 1.000.000 lines).

A more convenient and feature-complete alternative is
pept.utilities.ChunkReader which is more reusable and can access
out-of-order chunks using subscript notation (i.e. data[0]).

This is a convenience function that’s simply a proxy to pandas.read_csv,
configured with default parameters for fast reading and parsing of usual
PEPT data.

Most importantly, it lazily read chunks of size chunksize from a
space-separated values file at filepath_or_buffer, optionally
skipping skiprows lines and reading in nrows lines. It returns
numpy.ndarray`s with `float values.

The parameters below are sent to pandas.read_csv with no further parsing.
The descriptions below are taken from the pandas documentation.

	Parameters

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv. If
you want to pass in a path object, pandas accepts any os.PathLike. By
file-like object, we refer to objects with a read() method, such as a
file handler (e.g. via builtin open function) or StringIO.

	chunksizeint [https://docs.python.org/3/library/functions.html#int]
	Number of lines read in a chunk of data. Return TextFileReader object
for iteration.

	skiprowslist-like, int [https://docs.python.org/3/library/functions.html#int] or callable() [https://docs.python.org/3/library/functions.html#callable], optional
	Line numbers to skip (0-indexed) or number of lines to skip (int) at
the start of the file.

	nrowsint [https://docs.python.org/3/library/functions.html#int], optional
	Number of rows of file to read. Useful for reading pieces of large
files.

	dtypeType name, default float
	Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32,
‘c’: ‘Int64’}.

	sepstr [https://docs.python.org/3/library/stdtypes.html#str], default “s+”
	Delimiter to use. Separators longer than 1 character and different from
‘s+’ will be interpreted as regular expressions and will also force
the use of the Python parsing engine.

	headerint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int], “infer”, optional
	Row number(s) to use as the column names, and the start of the data. By
default assume there is no header present (i.e. header = None).

	engine{‘c’, ‘python’}, default “c”
	Parser engine to use. The C engine is faster while the python engine is
currently more feature-complete.

	na_filterbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True
	Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can
improve the performance of reading a large file.

	quotingint [https://docs.python.org/3/library/functions.html#int] or csv.QUOTE_* instance, default csv.QUOTE_NONE
	Control field quoting behavior per csv.QUOTE_* constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

	memory_mapbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If a filepath is provided for filepath_or_buffer, map the file object
directly onto memory and access the data directly from there. Using
this option can improve performance because there is no longer any I/O
overhead.

	**kwargsoptional
	Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.parallel_map_file

	
pept.utilities.parallel_map_file(func, fname, start, end, chunksize, *args, dtype=<class 'float'>, processes=None, callback=<function <lambda>>, error_callback=<function <lambda>>, **kwargs)

	Utility for parallelising (read CSV chunk -> process chunk) workflows.

This function reads individual chunks of data from a CSV-formatted file,
then asynchronously sends them as numpy arrays to an arbitrary function
func for processing. In effect, it reads a file in one main thread and
processes it in separate threads.

This is especially useful when dealing with very large files (like we do in
PEPT…) that you’d like to process in batches, in parallel.

	Parameters

	
	funccallable() [https://docs.python.org/3/library/functions.html#callable]
	The function that will be called with each chunk of data, the chunk
number, the other positional arguments *args and keyword arguments
**kwargs: func(data_chunk, chunk_number, *args, **kwargs).
data_chunk is a numpy array returned by numpy.loadtxt and
chunk_number is an int. func must be picklable for sending to
other threads.

	fnamefile, str [https://docs.python.org/3/library/stdtypes.html#str], or pathlib.Path [https://docs.python.org/3/library/pathlib.html#pathlib.Path]
	The file, filename, or generator that numpy.loadtxt will be supplied
with.

	startint [https://docs.python.org/3/library/functions.html#int]
	The starting line number that the chunks will be read from.

	endint [https://docs.python.org/3/library/functions.html#int]
	The ending line number that the chunks will be read from. This is
exclusive.

	chunksizeint [https://docs.python.org/3/library/functions.html#int]
	The number of lines that will be read for each chunk.

	*argsadditional positional arguments
	Additional positional arguments that will be supplied to func.

	dtypetype [https://docs.python.org/3/library/functions.html#type]
	The data type of the numpy array that is returned by numpy.loadtxt. The
default is float.

	processesint [https://docs.python.org/3/library/functions.html#int]
	The maximum number of threads that will be used for calling func. If
left to the default None, then the number returned by
os.cpu_count() will be used.

	callbackcallable() [https://docs.python.org/3/library/functions.html#callable]
	When the result from a func call becomes ready callback is applied to
it, that is unless the call failed, in which case the error_callback is
applied instead.

	error_callbackcallable() [https://docs.python.org/3/library/functions.html#callable]
	If the target function func fails, then the error_callback is called
with the exception instance.

	**kwargsadditional keybord arguments
	Additional keyword arguments that will be supplied to func.

	Returns

	
	list [https://docs.python.org/3/library/stdtypes.html#list]
	A Python list of the func call returns. The results are not
necessarily in order, though this can be verified by using the chunk
number that is supplied to each call to func. If func does not
return anything, it will simply be a list of None.

Notes

This function uses numpy.loadtxt to read chunks of data and
multiprocessing.Pool.apply_async to call func asynchronously.

As the calls to func happen in different threads, all the usual parallel
processing issues apply. For example, func should not save data to the
same file, as it will overwrite results from different threads and may
become corrupt - however, there is a workaround for this particular case:
because the chunk numbers are guaranteed to be unique, any data can be
saved to a file whose name includes this chunk number, making it unique.

Examples

For a random file-like CSV data object:

>>> import io
>>> flike = io.StringIO("1,2,3\n4,5,6\n7,8,9")
>>> def func(data, chunk_number):
>>> return (data, chunk_number)
>>> results = parallel_map_file(func, flike, 0, 3, 1)
>>> print(results)
>>> [([1, 2, 3], 0), ([4, 5, 6], 1), ([7, 8, 9], 2)]

pept.utilities.traverse2d

	
pept.utilities.traverse2d(double[:, :] pixels, const double[:, :] lines, const double[:] grid_x, const double[:] grid_y) → void

	Fast pixel traversal for 2D lines (or LoRs).

Function Signature:
 traverse2d(
 double[:, :] pixels, # Initialised to zero!
 double[:, :] lines, # Has exactly 7 columns!
 double[:] grid_x, # Has pixels.shape[0] + 1 elements!
 double[:] grid_y, # Has pixels.shape[1] + 1 elements!
)

This function computes the number of lines that passes through each pixel,
saving the result in pixels. It does so in an efficient manner, in which
for every line, only the pixels that it passes through are traversed.

As it is highly optimised, this function does not perform any checks on the
validity of the input data. Please check the parameters before calling
traverse2d, as it WILL segfault on wrong input data. Details are given
below, along with an example call.

	Parameters

	
	pixelsnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 2)
	The pixels parameter is a numpy.ndarray of shape (X, Y) that has been
initialised to zeros before the function call. The values will be
modified in-place in the function to reflect the number of lines that
pass through each pixel.

	linesnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 2)
	The lines parameter is a numpy.ndarray of shape(N, 5), where each row
is formatted as [time, x1, y1, x2, y2]. Only indices 1:5 will be used
as the two points P1 = [x1, y1] and P2 = [x2, y2] defining the line (or
LoR).

	grid_xnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 1)
	The grid_x parameter is a one-dimensional grid that delimits the pixels
in the x-dimension. It must be sorted in ascending order with
equally-spaced numbers and length X + 1 (pixels.shape[0] + 1).

	grid_ynumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 1)
	The grid_y parameter is a one-dimensional grid that delimits the pixels
in the y-dimension. It must be sorted in ascending order with
equally-spaced numbers and length Y + 1 (pixels.shape[1] + 1).

Notes

This function is an adaptation of a widely-used algorithm [1], optimised
for PEPT LoRs traversal.

	1

	Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing.
InEurographics 1987 Aug 24 (Vol. 87, No. 3, pp. 3-10).

Examples

The input parameters can be easily generated using numpy before calling the
function. For example, if a plane of 300 x 400 is split into
30 x 40 pixels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse2d
>>>
>>> plane = [300, 400]
>>> number_of_pixels = [30, 40]
>>> pixels = np.zeros(number_of_pixels)

The grid has one extra element than the number of pixels. For example, 5
pixels between 0 and 5 would be delimited by the grid [0, 1, 2, 3, 4, 5]
which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, plane[0], number_of_pixels[0] + 1)
>>> grid_y = np.linspace(0, plane[1], number_of_pixels[1] + 1)
>>>
>>> random_lines = np.random.random((100, 5)) * 100

Calling traverse2d will modify pixels in-place.

>>> traverse2d(pixels, random_lines, grid_x, grid_y)

pept.utilities.traverse3d

	
pept.utilities.traverse3d(double[:, :, :] voxels, const double[:, :] lines, const double[:] grid_x, const double[:] grid_y, const double[:] grid_z) → void

	Fast voxel traversal for 3D lines (or LoRs).

Function Signature:
 traverse3d(
 long[:, :, :] voxels, # Initialised!
 double[:, :] lines, # Has exactly 7 columns!
 double[:] grid_x, # Has voxels.shape[0] + 1 elements!
 double[:] grid_y, # Has voxels.shape[1] + 1 elements!
 double[:] grid_z # Has voxels.shape[2] + 1 elements!
)

This function computes the number of lines that passes through each voxel,
saving the result in voxels. It does so in an efficient manner, in which
for every line, only the voxels that is passes through are traversed.

As it is highly optimised, this function does not perform any checks on the
validity of the input data. Please check the parameters before calling
traverse3d, as it WILL segfault on wrong input data. Details are given
below, along with an example call.

	Parameters

	
	voxelsnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 3)
	The voxels parameter is a numpy.ndarray of shape (X, Y, Z) that
has been initialised to zeros before the function call. The values
will be modified in-place in the function to reflect the number of
lines that pass through each voxel.

	linesnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 2)
	The lines parameter is a numpy.ndarray of shape(N, 7), where each
row is formatted as [time, x1, y1, z1, x2, y2, z2]. Only indices 1:7
will be used as the two points P1 = [x1, y1, z2] and P2 = [x2, y2, z2]
defining the line (or LoR).

	grid_xnumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 1)
	The grid_x parameter is a one-dimensional grid that delimits the
voxels in the x-dimension. It must be sorted in ascending order
with equally-spaced numbers and length X + 1 (voxels.shape[0] + 1).

	grid_ynumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 1)
	The grid_y parameter is a one-dimensional grid that delimits the
voxels in the y-dimension. It must be sorted in ascending order
with equally-spaced numbers and length Y + 1 (voxels.shape[1] + 1).

	grid_znumpy.ndarray [https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray](dtype = numpy.float64 [https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64], ndim = 1)
	The grid_z parameter is a one-dimensional grid that delimits the
voxels in the z-dimension. It must be sorted in ascending order
with equally-spaced numbers and length Z + 1 (voxels.shape[2] + 1).

Notes

This function is an adaptation of a widely-used algorithm [1], optimised
for PEPT LoRs traversal.

	1

	Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing.
InEurographics 1987 Aug 24 (Vol. 87, No. 3, pp. 3-10)..

Examples

The input parameters can be easily generated using numpy before calling the
function. For example, if a volume of 300 x 400 x 500 is split into
30 x 40 x 50 voxels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse3d
>>>
>>> volume = [300, 400, 500]
>>> number_of_voxels = [30, 40, 50]
>>> voxels = np.zeros(number_of_voxels)

The grid has one extra element than the number of voxels. For example, 5
voxels between 0 and 5 would be delimited by the grid [0, 1, 2, 3, 4, 5]
which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, volume[0], number_of_voxels[0] + 1)
>>> grid_y = np.linspace(0, volume[1], number_of_voxels[1] + 1)
>>> grid_z = np.linspace(0, volume[2], number_of_voxels[2] + 1)
>>>
>>> random_lines = np.random.random((100, 7)) * 300

Calling traverse3d will modify voxels in-place.

>>> traverse3d(voxels, random_lines, grid_x, grid_y, grid_z)

pept.utilities.ChunkReader

	
class pept.utilities.ChunkReader(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Class for fast, on-demand reading / parsing and iteration over chunks of
data from CSV files.

This is an abstraction above pandas.read_csv for easy and fast iteration
over chunks of data from a CSV file. The chunks can be accessed using
normal iteration (for chunk in reader: …) and subscripting
(reader[0]).

The chunks are read lazily, only upon access. It is therefore a more
efficient alternative to read_csv for large files (> 1.000.000 lines).
For convenience, this class configures some default parameters for
pandas.read_csv for fast reading and parsing of usual PEPT data.

Most importantly, it reads chunks containing chunksize lines from a
space-separated values file at filepath_or_buffer, optionally
skipping skiprows lines and reading in at most nrows lines. It returns
numpy.ndarray`s with `float values.

	Raises

	
	IndexError [https://docs.python.org/3/library/exceptions.html#IndexError]
	Upon access to a non-existent chunk using subscript notation
(i.e. data[100] when there are 50 chunks).

See also

	pept.utilities.read_csv
	Fast CSV file reading into numpy arrays.

	pept.LineData
	Encapsulate LoRs for ease of iteration and plotting.

	pept.PointData
	Encapsulate points for ease of iteration and plotting.

Examples

Say “data.csv” contains 1_000_000 lines of data. Read chunks of 10_000
lines as a time, skipping the first 100_000:

>>> from pept.utilities import ChunkReader
>>> chunks = ChunkReader("data.csv", 10_000, skiprows = 100_000)
>>> len(chunks) # 90 chunks
>>> chunks.file_lines # 1_000_000

Normal iteration:

>>> for chunk in chunks:
>>> ... # neat operations

Access a single chunk using subscripting:

>>> chunks[0] # First chunk
>>> chunks[-1] # Last chunk
>>> chunks[100] # IndexError

	Attributes

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Any valid string path is acceptable. The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a
host is expected. A local file could be
file://localhost/path/to/table.csv. If you want to pass in a path
object, pandas accepts any os.PathLike. By file-like object, we
refer to objects with a read() method, such as a file handler
(e.g. via builtin open function) or StringIO.

	number_of_chunksint [https://docs.python.org/3/library/functions.html#int]
	The number of chunks (also returned when using the len method),
taking into account the lines skipped (skiprows), the number of lines
in the file (file_lines) and the maximum number of lines to be read
(nrows).

	file_linesint [https://docs.python.org/3/library/functions.html#int]
	The number of lines in the file pointed at by filepath_or_buffer.

	chunksizeint [https://docs.python.org/3/library/functions.html#int]
	The number of lines in a chunk of data.

	skiprowsint [https://docs.python.org/3/library/functions.html#int]
	The number of lines to be skipped at the beginning of the file.

	nrowsint [https://docs.python.org/3/library/functions.html#int]
	The maximum number of lines to be read. Only has an effect if it is
less than file_lines - skiprows. For example, if a file has
10 lines and skiprows = 5 and chunksize = 5, even if nrows were
to be 20, the number_of_chunks should still be 1.

	
__init__(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

	ChunkReader class constructor.

	Parameters

	
	filepath_or_bufferstr [https://docs.python.org/3/library/stdtypes.html#str], path object [https://docs.python.org/3/library/functions.html#object] or file-like object [https://docs.python.org/3/library/functions.html#object]
	Any valid string path to a local file is acceptable. If you want
to read in lines from an online location (i.e. using a URL), you
should use pept.utilities.read_csv. If you want to pass in a path
object, pandas accepts any os.PathLike. By file-like object, we
refer to objects with a read() method, such as a file handler
(e.g. via builtin open function) or StringIO.

	chunksizeint [https://docs.python.org/3/library/functions.html#int]
	Number of lines read in a chunk of data.

	skiprowslist-like, int [https://docs.python.org/3/library/functions.html#int] or callable() [https://docs.python.org/3/library/functions.html#callable], optional
	Line numbers to skip (0-indexed) or number of lines to skip (int)
at the start of the file.

	nrowsint [https://docs.python.org/3/library/functions.html#int], optional
	Number of rows of file to read. Useful for reading pieces of large
files.

	dtypeType name, default float
	Data type for data or columns. E.g. {‘a’: np.float64,
‘b’: np.int32, ‘c’: ‘Int64’}.

	sepstr [https://docs.python.org/3/library/stdtypes.html#str], default “s+”
	Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also
force the use of the Python parsing engine.

	headerint [https://docs.python.org/3/library/functions.html#int], list [https://docs.python.org/3/library/stdtypes.html#list] of int [https://docs.python.org/3/library/functions.html#int], “infer”, optional
	Row number(s) to use as the column names, and the start of the
data. By default assume there is no header present (i.e.
header = None).

	engine{‘c’, ‘python’}, default “c”
	Parser engine to use. The C engine is faster while the python
engine is currently more feature-complete.

	na_filterbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True
	Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can
improve the performance of reading a large file.

	quotingint [https://docs.python.org/3/library/functions.html#int] or csv.QUOTE_* instance, default csv.QUOTE_NONE
	Control field quoting behavior per csv.QUOTE_* constants. Use one
of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or
QUOTE_NONE (3).

	memory_mapbool [https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values], default True [https://docs.python.org/3/library/constants.html#True]
	If a filepath is provided for filepath_or_buffer, map the file
object directly onto memory and access the data directly from
there. Using this option can improve performance because there is
no longer any I/O overhead.

	**kwargsoptional
	Extra keyword arguments that will be passed to pandas.read_csv.

	Raises

	
	EOFErrorEnd Of File Error
	If skiprows >= number_of_lines.

Methods

	__init__(filepath_or_buffer, chunksize[, ...])

	ChunkReader class constructor.

Attributes

	chunksize

	

	file_lines

	

	nrows

	

	number_of_chunks

	

	skiprows

	

	
property number_of_chunks

	

	
property file_lines

	

	
property chunksize

	

	
property skiprows

	

	
property nrows

	

pept.simulation

	pept.simulation.Simulator(trajectory, ...[, ...])

	Simulate PEPT data.

pept.simulation.Simulator

	
class pept.simulation.Simulator(trajectory, sampling_times, shape_function, separation=712, decay_energy=0.6335, Zeff=7.22, Aeff=13, x_max=500, y_max=500)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simulate PEPT data.

	
__init__(trajectory, sampling_times, shape_function, separation=712, decay_energy=0.6335, Zeff=7.22, Aeff=13, x_max=500, y_max=500)

	Simulator class constructor.

Methods

	__init__(trajectory, sampling_times, ...[, ...])

	Simulator class constructor.

	add_noise(noise_ratio)

	

	add_noise_and_spread(noise_ratio[, ...])

	

	add_spread([max_spread, depth])

	

	change_sampling_times(new_sampling_times)

	

	change_shape(new_shape_function)

	

	change_trajectory(new_trajectory)

	

	simulate()

	

	write_csv(fname)

	

	write_noise_csv(fname)

	

	
simulate()

	

	
add_noise(noise_ratio)

	

	
add_spread(max_spread=4, depth=16)

	

	
add_noise_and_spread(noise_ratio, max_spread=4, depth=16)

	

	
change_trajectory(new_trajectory)

	

	
change_sampling_times(new_sampling_times)

	

	
change_shape(new_shape_function)

	

	
write_csv(fname)

	

	
write_noise_csv(fname)

	

Contributing

The pept library is not a one-man project; it is being built, improved and extended continuously (directly or indirectly) by an international team of researchers of diverse backgrounds - including programmers, mathematicians and chemical / mechanical / nuclear engineers. Want to contribute and become a PEPTspert yourself? Great, join the team!

There are multiple ways to help:

	Open an issue mentioning any improvement you think pept could benefit from.

	Write a tutorial or share scripts you’ve developed that we can add to the pept documentation to help other people in the future.

	Share your PEPT-related algorithms - tracking, post-processing, visualisation, anything really! - so everybody can benefit from them.

Want to be a superhero and contribute code directly to the library itself? Grand - fork the project, add your code and submit a pull request (if that sounds like gibberish but you’re an eager programmer, check this article [https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests]). We are more than happy to work with you on integrating your code into the library and, if helpful, we can schedule a screen-to-screen meeting for a more in-depth discussion about the pept package architecture.

Naturally, anything you contribute to the library will respect your authorship - protected by the strong GPL v3.0 open-source license (see the “Licensing” section below). If you include published work, please add a pointer to your publication in the code documentation.

Licensing

The pept package is GPL v3.0 [https://choosealicense.com/licenses/gpl-3.0/] licensed. In non-lawyer terms, the key points of this license are:

	You can view, use, copy and modify this code _freely_.

	Your modifications must _also_ be licensed with GPL v3.0 or later.

	If you share your modifications with someone, you have to include the source code as well.

Essentially do whatever you want with the code, but don’t try selling it saying it’s yours :). This is a community-driven project building upon many other wonderful open-source projects (NumPy, Plotly, even Python itself!) without which pept simply would not have been possible. GPL v3.0 is indeed a very strong copyleft license; it was deliberately chosen to maintain the openness and transparency of great software and progress, and respect the researchers pushing PEPT forward. Frankly, open collaboration is way more efficient than closed, for-profit competition.

Citing

If you used this codebase or any software making use of it in a scientific publication, we ask you to cite the following paper:

Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of Scientific Instruments. 2020 Jan 1;91(1):013329.
https://doi.org/10.1063/1.5129251

Because pept is a project bringing together the expertise of many people, it hosts multiple algorithms that were developed and published in other papers. Please check the documentation of the pept algorithms you are using in your research and cite the original papers mentioned accordingly.

References

Papers presenting PEPT algorithms included in this library: 1, 2, 3.

	1

	Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron
emission particle tracking-a technique for studying flow within engineering
equipment. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. 1993
Mar 10;326(3):592-607.

	2

	Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using
machine learning. Review of Scientific Instruments. 2020 Jan 1;91(1):013329.

	3

	Wiggins C, Santos R, Ruggles A. A feature point identification method
for positron emission particle tracking with multiple tracers. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment. 2017 Jan 21;843:22-8.

 Python Module Index

 p

 		 	

 		
 p	

 	[image: -]
 	
 pept	

 	
 	
 pept.plots	

 	
 	
 pept.processing	

 	
 	
 pept.scanners	

 	
 	
 pept.simulation	

 	
 	
 pept.tracking	

 	
 	
 pept.utilities	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z

_

 	
 	__init__() (pept.AdaptiveWindow method)

 	(pept.base.Filter method)

 	(pept.base.IterableSamples method)

 	(pept.base.LineDataFilter method)

 	(pept.base.PEPTObject method)

 	(pept.base.PointDataFilter method)

 	(pept.base.Reducer method)

 	(pept.base.Transformer method)

 	(pept.base.VoxelsFilter method)

 	(pept.LineData method)

 	(pept.Pipeline method)

 	(pept.Pixels method)

 	(pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	(pept.PointData method)

 	(pept.processing.AutoCorrelation method)

 	(pept.processing.DynamicProbability2D method)

 	(pept.processing.DynamicProbability3D method)

 	(pept.processing.LaceyColors method)

 	(pept.processing.LaceyColorsLinear method)

 	(pept.processing.RelativeDeviations method)

 	(pept.processing.RelativeDeviationsLinear method)

 	(pept.processing.ResidenceDistribution2D method)

 	(pept.processing.ResidenceDistribution3D method)

 	(pept.processing.SpatialProjections method)

 	(pept.processing.VectorField2D method)

 	(pept.processing.VectorField3D method)

 	(pept.processing.VectorGrid2D method)

 	(pept.processing.VectorGrid3D method)

 	(pept.scanners.ADACGeometricEfficiency method)

 	(pept.simulation.Simulator method)

 	(pept.TimeWindow method)

 	(pept.tracking.BirminghamMethod method)

 	(pept.tracking.Centroids method)

 	(pept.tracking.Condition method)

 	(pept.tracking.Cutpoints method)

 	(pept.tracking.CutpointsToF method)

 	(pept.tracking.Debug method)

 	(pept.tracking.FPI method)

 	(pept.tracking.GaussianDensity method)

 	(pept.tracking.GroupBy method)

 	(pept.tracking.HDBSCAN method)

 	(pept.tracking.Interpolate method)

 	(pept.tracking.LinesCentroids method)

 	(pept.tracking.Minpoints method)

 	(pept.tracking.OptimizeWindow method)

 	(pept.tracking.OutOfViewFilter method)

 	(pept.tracking.Reconnect method)

 	(pept.tracking.Remove method)

 	(pept.tracking.RemoveStatic method)

 	(pept.tracking.Reorient method)

 	(pept.tracking.SamplesCondition method)

 	(pept.tracking.Segregate method)

 	(pept.tracking.SplitLabels method)

 	(pept.tracking.Stack method)

 	(pept.tracking.Swap method)

 	(pept.tracking.TimeOfFlight method)

 	(pept.tracking.Velocity method)

 	(pept.tracking.Voxelize method)

 	(pept.utilities.ChunkReader method)

 	(pept.Voxels method)

A

 	
 	adac_forte() (in module pept.scanners)

 	ADACGeometricEfficiency (class in pept.scanners)

 	AdaptiveWindow (class in pept)

 	add_image() (pept.plots.PlotlyGrapher2D method)

 	add_lines() (pept.Pixels method)

 	(pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	(pept.Voxels method)

 	add_noise() (pept.simulation.Simulator method)

 	add_noise_and_spread() (pept.simulation.Simulator method)

 	add_pixels() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	add_points() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	add_spread() (pept.simulation.Simulator method)

 	
 	add_timeseries() (pept.plots.PlotlyGrapher2D method)

 	add_trace() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	add_traces() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	add_voxels() (pept.plots.PlotlyGrapher method)

 	append_indices (pept.tracking.Cutpoints property)

 	(pept.tracking.CutpointsToF property)

 	(pept.tracking.Minpoints property)

 	attrs (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.Pixels property)

 	(pept.PointData property)

 	(pept.Voxels property)

 	AutoCorrelation (class in pept.processing)

B

 	
 	BirminghamMethod (class in pept.tracking)

C

 	
 	centroid() (pept.tracking.LinesCentroids static method)

 	Centroids (class in pept.tracking)

 	change_sampling_times() (pept.simulation.Simulator method)

 	change_shape() (pept.simulation.Simulator method)

 	change_trajectory() (pept.simulation.Simulator method)

 	ChunkReader (class in pept.utilities)

 	chunksize (pept.utilities.ChunkReader property)

 	columns (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.PointData property)

 	(pept.tracking.Remove property)

 	Condition (class in pept.tracking)

 	conditions (pept.tracking.Condition property)

 	(pept.tracking.SamplesCondition property)

 	copy() (pept.base.Filter method)

 	(pept.base.IterableSamples method)

 	(pept.base.LineDataFilter method)

 	(pept.base.PEPTObject method)

 	(pept.base.PointDataFilter method)

 	(pept.base.Reducer method)

 	(pept.base.Transformer method)

 	(pept.base.VoxelsFilter method)

 	(pept.LineData method)

 	(pept.Pipeline method)

 	(pept.Pixels method)

 	(pept.plots.PlotlyGrapher method)

 	(pept.PointData method)

 	(pept.processing.AutoCorrelation method)

 	(pept.processing.DynamicProbability2D method)

 	(pept.processing.DynamicProbability3D method)

 	(pept.processing.LaceyColors method)

 	(pept.processing.LaceyColorsLinear method)

 	(pept.processing.RelativeDeviations method)

 	(pept.processing.RelativeDeviationsLinear method)

 	(pept.processing.ResidenceDistribution2D method)

 	(pept.processing.ResidenceDistribution3D method)

 	(pept.processing.SpatialProjections method)

 	(pept.processing.VectorField2D method)

 	(pept.processing.VectorField3D method)

 	(pept.scanners.ADACGeometricEfficiency method)

 	(pept.tracking.BirminghamMethod method)

 	(pept.tracking.Centroids method)

 	(pept.tracking.Condition method)

 	(pept.tracking.Cutpoints method)

 	(pept.tracking.CutpointsToF method)

 	(pept.tracking.Debug method)

 	(pept.tracking.FPI method)

 	(pept.tracking.GaussianDensity method)

 	(pept.tracking.GroupBy method)

 	(pept.tracking.HDBSCAN method)

 	(pept.tracking.Interpolate method)

 	(pept.tracking.LinesCentroids method)

 	(pept.tracking.Minpoints method)

 	(pept.tracking.OptimizeWindow method)

 	(pept.tracking.OutOfViewFilter method)

 	(pept.tracking.Reconnect method)

 	(pept.tracking.Remove method)

 	(pept.tracking.RemoveStatic method)

 	(pept.tracking.Reorient method)

 	(pept.tracking.SamplesCondition method)

 	(pept.tracking.Segregate method)

 	(pept.tracking.SplitLabels method)

 	(pept.tracking.Stack method)

 	(pept.tracking.Swap method)

 	(pept.tracking.TimeOfFlight method)

 	(pept.tracking.Velocity method)

 	(pept.tracking.Voxelize method)

 	(pept.Voxels method)

 	
 	create_figure() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	cube_trace() (pept.Voxels method)

 	cubes_traces() (pept.Voxels method)

 	cutoffs (pept.tracking.Cutpoints property)

 	(pept.tracking.CutpointsToF property)

 	(pept.tracking.Minpoints property)

 	Cutpoints (class in pept.tracking)

 	CutpointsToF (class in pept.tracking)

D

 	
 	data (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.PointData property)

 	
 	Debug (class in pept.tracking)

 	distance_matrix() (pept.tracking.LinesCentroids static method)

 	DynamicProbability2D (class in pept.processing)

 	DynamicProbability3D (class in pept.processing)

E

 	
 	eg() (pept.scanners.ADACGeometricEfficiency method)

 	equalise_axes() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	equalise_separate() (pept.plots.PlotlyGrapher2D method)

 	
 	evaluate() (pept.tracking.OptimizeWindow method)

 	extra_attrs() (pept.base.IterableSamples method)

 	(pept.LineData method)

 	(pept.PointData method)

F

 	
 	fig (pept.plots.PlotlyGrapher property)

 	(pept.plots.PlotlyGrapher2D property)

 	file_lines (pept.utilities.ChunkReader property)

 	Filter (class in pept.base)

 	filters (pept.Pipeline property)

 	find_cutpoints() (in module pept.utilities)

 	find_minpoints() (in module pept.utilities)

 	fit() (pept.base.Filter method)

 	(pept.base.LineDataFilter method)

 	(pept.base.PointDataFilter method)

 	(pept.base.Reducer method)

 	(pept.base.VoxelsFilter method)

 	(pept.Pipeline method)

 	(pept.processing.AutoCorrelation method)

 	(pept.processing.DynamicProbability2D method)

 	(pept.processing.DynamicProbability3D method)

 	(pept.processing.LaceyColors method)

 	(pept.processing.LaceyColorsLinear method)

 	(pept.processing.RelativeDeviations method)

 	(pept.processing.RelativeDeviationsLinear method)

 	(pept.processing.ResidenceDistribution2D method)

 	(pept.processing.ResidenceDistribution3D method)

 	(pept.processing.SpatialProjections method)

 	(pept.processing.VectorField2D method)

 	(pept.processing.VectorField3D method)

 	(pept.tracking.BirminghamMethod method)

 	(pept.tracking.Centroids method)

 	(pept.tracking.Condition method)

 	(pept.tracking.Cutpoints method)

 	(pept.tracking.CutpointsToF method)

 	(pept.tracking.Debug method)

 	(pept.tracking.FPI method)

 	(pept.tracking.GaussianDensity method)

 	(pept.tracking.GroupBy method)

 	(pept.tracking.HDBSCAN method)

 	(pept.tracking.Interpolate method)

 	(pept.tracking.LinesCentroids method)

 	(pept.tracking.Minpoints method)

 	(pept.tracking.OptimizeWindow method)

 	(pept.tracking.OutOfViewFilter method)

 	(pept.tracking.Reconnect method)

 	(pept.tracking.Remove method)

 	(pept.tracking.RemoveStatic method)

 	(pept.tracking.Reorient method)

 	(pept.tracking.SamplesCondition method)

 	(pept.tracking.Segregate method)

 	(pept.tracking.SplitLabels method)

 	(pept.tracking.Stack method)

 	(pept.tracking.Swap method)

 	(pept.tracking.TimeOfFlight method)

 	(pept.tracking.Velocity method)

 	(pept.tracking.Voxelize method)

 	
 	fit_sample() (pept.base.Filter method)

 	(pept.base.LineDataFilter method)

 	(pept.base.PointDataFilter method)

 	(pept.base.VoxelsFilter method)

 	(pept.Pipeline method)

 	(pept.tracking.BirminghamMethod method)

 	(pept.tracking.Centroids method)

 	(pept.tracking.Condition method)

 	(pept.tracking.Cutpoints method)

 	(pept.tracking.CutpointsToF method)

 	(pept.tracking.FPI method)

 	(pept.tracking.GaussianDensity method)

 	(pept.tracking.HDBSCAN method)

 	(pept.tracking.Interpolate method)

 	(pept.tracking.LinesCentroids method)

 	(pept.tracking.Minpoints method)

 	(pept.tracking.Remove method)

 	(pept.tracking.SplitLabels method)

 	(pept.tracking.Swap method)

 	(pept.tracking.TimeOfFlight method)

 	(pept.tracking.Velocity method)

 	(pept.tracking.Voxelize method)

 	format_fig() (in module pept.plots)

 	FPI (class in pept.tracking)

 	from_lines() (pept.Pixels static method)

 	(pept.Voxels static method)

 	from_physical() (pept.Pixels method)

 	(pept.Voxels method)

G

 	
 	GaussianDensity (class in pept.tracking)

 	
 	group_by_column() (in module pept.utilities)

 	GroupBy (class in pept.tracking)

H

 	
 	HDBSCAN (class in pept.tracking)

 	heatmap_trace() (pept.Pixels method)

 	(pept.Voxels method)

 	
 	hidden_attrs() (pept.base.IterableSamples method)

 	(pept.LineData method)

 	(pept.PointData method)

 	histogram() (in module pept.plots)

I

 	
 	Interpolate (class in pept.tracking)

 	
 	IterableSamples (class in pept.base)

L

 	
 	LaceyColors (class in pept.processing)

 	LaceyColorsLinear (class in pept.processing)

 	LineData (class in pept)

 	LineDataFilter (class in pept.base)

 	lines (pept.LineData property)

 	lines_trace() (pept.plots.PlotlyGrapher static method)

 	(pept.plots.PlotlyGrapher2D static method)

 	LinesCentroids (class in pept.tracking)

 	load() (in module pept)

 	(pept.base.Filter static method)

 	(pept.base.IterableSamples static method)

 	(pept.base.LineDataFilter static method)

 	(pept.base.PEPTObject static method)

 	(pept.base.PointDataFilter static method)

 	(pept.base.Reducer static method)

 	(pept.base.Transformer static method)

 	(pept.base.VoxelsFilter static method)

 	(pept.LineData static method)

 	(pept.Pipeline static method)

 	(pept.Pixels static method)

 	(pept.plots.PlotlyGrapher static method)

 	(pept.PointData static method)

 	(pept.processing.AutoCorrelation static method)

 	(pept.processing.DynamicProbability2D static method)

 	(pept.processing.DynamicProbability3D static method)

 	(pept.processing.LaceyColors static method)

 	(pept.processing.LaceyColorsLinear static method)

 	(pept.processing.RelativeDeviations static method)

 	(pept.processing.RelativeDeviationsLinear static method)

 	(pept.processing.ResidenceDistribution2D static method)

 	(pept.processing.ResidenceDistribution3D static method)

 	(pept.processing.SpatialProjections static method)

 	(pept.processing.VectorField2D static method)

 	(pept.processing.VectorField3D static method)

 	(pept.scanners.ADACGeometricEfficiency static method)

 	(pept.tracking.BirminghamMethod static method)

 	(pept.tracking.Centroids static method)

 	(pept.tracking.Condition static method)

 	(pept.tracking.Cutpoints static method)

 	(pept.tracking.CutpointsToF static method)

 	(pept.tracking.Debug static method)

 	(pept.tracking.FPI static method)

 	(pept.tracking.GaussianDensity static method)

 	(pept.tracking.GroupBy static method)

 	(pept.tracking.HDBSCAN static method)

 	(pept.tracking.Interpolate static method)

 	(pept.tracking.LinesCentroids static method)

 	(pept.tracking.Minpoints static method)

 	(pept.tracking.OptimizeWindow static method)

 	(pept.tracking.OutOfViewFilter static method)

 	(pept.tracking.Reconnect static method)

 	(pept.tracking.Remove static method)

 	(pept.tracking.RemoveStatic static method)

 	(pept.tracking.Reorient static method)

 	(pept.tracking.SamplesCondition static method)

 	(pept.tracking.Segregate static method)

 	(pept.tracking.SplitLabels static method)

 	(pept.tracking.Stack static method)

 	(pept.tracking.Swap static method)

 	(pept.tracking.TimeOfFlight static method)

 	(pept.tracking.Velocity static method)

 	(pept.tracking.Voxelize static method)

 	(pept.Voxels static method)

 	
 	lower (pept.Pixels property)

 	(pept.Voxels property)

M

 	
 	make_video() (in module pept.plots)

 	max_distance (pept.tracking.Cutpoints property)

 	(pept.tracking.CutpointsToF property)

 	(pept.tracking.Minpoints property)

 	Minpoints (class in pept.tracking)

 	modular_camera() (in module pept.scanners)

 	
 	
 module

 	pept.plots

 	pept.processing

 	pept.scanners

 	pept.simulation

 	pept.tracking

 	pept.utilities

N

 	
 	nrows (pept.utilities.ChunkReader property)

 	num_lines (pept.tracking.Minpoints property)

 	
 	number_of_chunks (pept.utilities.ChunkReader property)

 	number_of_lines() (in module pept.utilities)

 	number_of_voxels (pept.tracking.Voxelize property)

O

 	
 	optimise() (pept.Pipeline method)

 	OptimizeWindow (class in pept.tracking)

 	OutOfViewFilter (class in pept.tracking)

 	
 	overlap (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.PointData property)

P

 	
 	parallel_map_file() (in module pept.utilities)

 	parallel_screens() (in module pept.scanners)

 	
 pept.plots

 	module

 	
 pept.processing

 	module

 	
 pept.scanners

 	module

 	
 pept.simulation

 	module

 	
 pept.tracking

 	module

 	
 pept.utilities

 	module

 	PEPTObject (class in pept.base)

 	Pipeline (class in pept)

 	
 	pixel_grids (pept.Pixels property)

 	pixel_size (pept.Pixels property)

 	Pixels (class in pept)

 	pixels (pept.Pixels property)

 	plot() (pept.LineData method)

 	(pept.Pixels method)

 	(pept.PointData method)

 	(pept.Voxels method)

 	plot_volumetric() (pept.Voxels method)

 	PlotlyGrapher (class in pept.plots)

 	PlotlyGrapher2D (class in pept.plots)

 	PointData (class in pept)

 	PointDataFilter (class in pept.base)

 	points (pept.PointData property)

 	points_trace() (pept.plots.PlotlyGrapher static method)

 	(pept.plots.PlotlyGrapher2D static method)

 	predict() (pept.tracking.LinesCentroids method)

Q

 	
 	quiver() (pept.processing.VectorGrid2D method)

R

 	
 	read_csv() (in module pept)

 	(in module pept.utilities)

 	read_csv_chunks() (in module pept.utilities)

 	Reconnect (class in pept.tracking)

 	Reducer (class in pept.base)

 	reducers (pept.Pipeline property)

 	
 	RelativeDeviations (class in pept.processing)

 	RelativeDeviationsLinear (class in pept.processing)

 	Remove (class in pept.tracking)

 	RemoveStatic (class in pept.tracking)

 	Reorient (class in pept.tracking)

 	ResidenceDistribution2D (class in pept.processing)

 	ResidenceDistribution3D (class in pept.processing)

S

 	
 	sample_size (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.PointData property)

 	samples_indices (pept.base.IterableSamples property)

 	(pept.LineData property)

 	(pept.PointData property)

 	SamplesCondition (class in pept.tracking)

 	save() (in module pept)

 	(pept.base.Filter method)

 	(pept.base.IterableSamples method)

 	(pept.base.LineDataFilter method)

 	(pept.base.PEPTObject method)

 	(pept.base.PointDataFilter method)

 	(pept.base.Reducer method)

 	(pept.base.Transformer method)

 	(pept.base.VoxelsFilter method)

 	(pept.LineData method)

 	(pept.Pipeline method)

 	(pept.Pixels method)

 	(pept.plots.PlotlyGrapher method)

 	(pept.PointData method)

 	(pept.processing.AutoCorrelation method)

 	(pept.processing.DynamicProbability2D method)

 	(pept.processing.DynamicProbability3D method)

 	(pept.processing.LaceyColors method)

 	(pept.processing.LaceyColorsLinear method)

 	(pept.processing.RelativeDeviations method)

 	(pept.processing.RelativeDeviationsLinear method)

 	(pept.processing.ResidenceDistribution2D method)

 	(pept.processing.ResidenceDistribution3D method)

 	(pept.processing.SpatialProjections method)

 	(pept.processing.VectorField2D method)

 	(pept.processing.VectorField3D method)

 	(pept.scanners.ADACGeometricEfficiency method)

 	(pept.tracking.BirminghamMethod method)

 	(pept.tracking.Centroids method)

 	(pept.tracking.Condition method)

 	(pept.tracking.Cutpoints method)

 	(pept.tracking.CutpointsToF method)

 	(pept.tracking.Debug method)

 	(pept.tracking.FPI method)

 	(pept.tracking.GaussianDensity method)

 	(pept.tracking.GroupBy method)

 	(pept.tracking.HDBSCAN method)

 	(pept.tracking.Interpolate method)

 	(pept.tracking.LinesCentroids method)

 	(pept.tracking.Minpoints method)

 	(pept.tracking.OptimizeWindow method)

 	(pept.tracking.OutOfViewFilter method)

 	(pept.tracking.Reconnect method)

 	(pept.tracking.Remove method)

 	(pept.tracking.RemoveStatic method)

 	(pept.tracking.Reorient method)

 	(pept.tracking.SamplesCondition method)

 	(pept.tracking.Segregate method)

 	(pept.tracking.SplitLabels method)

 	(pept.tracking.Stack method)

 	(pept.tracking.Swap method)

 	(pept.tracking.TimeOfFlight method)

 	(pept.tracking.Velocity method)

 	(pept.tracking.Voxelize method)

 	(pept.Voxels method)

 	
 	scatter_trace() (pept.Voxels method)

 	Segregate (class in pept.tracking)

 	set_lims() (pept.tracking.Voxelize method)

 	show() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	simulate() (pept.simulation.Simulator method)

 	Simulator (class in pept.simulation)

 	skiprows (pept.utilities.ChunkReader property)

 	SpatialProjections (class in pept.processing)

 	SplitAll (in module pept.tracking)

 	SplitLabels (class in pept.tracking)

 	Stack (class in pept.tracking)

 	steps() (pept.Pipeline method)

 	Swap (class in pept.tracking)

 	swaps (pept.tracking.Swap property)

T

 	
 	TimeOfFlight (class in pept.tracking)

 	timeseries_trace() (pept.plots.PlotlyGrapher2D static method)

 	TimeWindow (class in pept)

 	to_csv() (pept.LineData method)

 	(pept.PointData method)

 	to_html() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	
 	to_physical() (pept.Pixels method)

 	(pept.Voxels method)

 	Transformer (class in pept.base)

 	transformers (pept.Pipeline property)

 	traverse2d() (in module pept.utilities)

 	traverse3d() (in module pept.utilities)

U

 	
 	upper (pept.Pixels property)

 	(pept.Voxels property)

V

 	
 	VectorField2D (class in pept.processing)

 	VectorField3D (class in pept.processing)

 	VectorGrid2D (class in pept.processing)

 	VectorGrid3D (class in pept.processing)

 	vectors() (pept.processing.VectorGrid2D method)

 	(pept.processing.VectorGrid3D method)

 	Velocity (class in pept.tracking)

 	
 	voxel_grids (pept.Voxels property)

 	voxel_size (pept.Voxels property)

 	Voxelize (class in pept.tracking)

 	Voxels (class in pept)

 	voxels (pept.Voxels property)

 	VoxelsFilter (class in pept.base)

 	vtk() (pept.Voxels method)

W

 	
 	window (pept.TimeWindow attribute)

 	
 	write_csv() (pept.simulation.Simulator method)

 	write_noise_csv() (pept.simulation.Simulator method)

X

 	
 	xlabel() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	xlim (pept.Pixels property)

 	(pept.plots.PlotlyGrapher property)

 	(pept.plots.PlotlyGrapher2D property)

 	(pept.tracking.Voxelize property)

 	(pept.Voxels property)

Y

 	
 	ylabel() (pept.plots.PlotlyGrapher method)

 	(pept.plots.PlotlyGrapher2D method)

 	ylim (pept.Pixels property)

 	(pept.plots.PlotlyGrapher property)

 	(pept.plots.PlotlyGrapher2D property)

 	(pept.tracking.Voxelize property)

 	(pept.Voxels property)

Z

 	
 	zeros() (pept.Pixels static method)

 	(pept.Voxels static method)

 	zlabel() (pept.plots.PlotlyGrapher method)

 	
 	zlim (pept.plots.PlotlyGrapher property)

 	(pept.tracking.Voxelize property)

 	(pept.Voxels property)

 _static/minus.png

_static/plus.png

_static/file.png

_static/logo.png

nav.xhtml

 Table of Contents

 		
 The PEPT Library’s Documentation

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Tutorials

 		
 Absolute Basics

 		
 pept.LineData

 		
 Saving / Loading Data

 		
 Plotting

 		
 Interactive 3D Plots

 		
 Adding Colourbars

 		
 Histogram of Tracking Errors

 		
 Exporting Plotly Graphs as Images

 		
 Modifying the Underlying Figure

 		
 Initialising PEPT Scanner Data

 		
 ADAC Forte

 		
 Parallel Screens

 		
 Modular Camera

 		
 Adaptive Sampling

 		
 The Birmingham Method

 		
 Birmingham Method recipe

 		
 Recipe with Trajectory Separation

 		
 PEPT-ML

 		
 PEPT-ML one pass of clustering recipe

 		
 PEPT-ML second pass of clustering recipe

 		
 PEPT-ML complete recipe

 		
 Example of a Complex Processing Pipeline

 		
 Feature Point Identification

 		
 FPI Recipe

 		
 Tracking Errors

 		
 Histogram of Tracking Errors

 		
 Trajectory Separation

 		
 Segregate Points

 		
 Filtering Data

 		
 Remove

 		
 Condition

 		
 SamplesCondition

 		
 GroupBy

 		
 RemoveStatic

 		
 Extracting Velocities

 		
 Interpolating Timesteps

 		
 Manual

 		
 Base Functions

 		
 pept.read_csv

 		
 pept.load

 		
 pept.save

 		
 Base Classes

 		
 pept.LineData

 		
 pept.PointData

 		
 pept.Pixels

 		
 pept.Voxels

 		
 pept.Pipeline

 		
 Auxilliaries

 		
 pept.TimeWindow

 		
 pept.AdaptiveWindow

 		
 Contributing

 		
 Licensing

 		
 Citing

 		
 References

_images/pept_transformation.png
(ww) £

500

320
300

400

< 280
300 ’i

3 260
- 240
100 o
10050 17%%60 B

28 - >

+ e \
’ o, 0 o
) R o

ECIN SN
E
35

