PEPT Documentation
Release 0.5.2

PEPT maintainers

Apr 24, 2023

1 Positron Emission Particle Tracking
2 Tutorials and Documentation

3 Performance

4 Copyright

5 Indices and tables

5.1 Getting Started L.
5.2 Tutorials
53 Manual oL
54 Contributing L.
55 CGitingo

Bibliography

Python Module Index

Index

DOCUMENTATION

PEPT Documentation, Release 0.5.2

A Python library that unifies Positron Emission Particle Tracking (PEPT) research, including tracking, simulation, data
analysis and visualisation tools.

DOCUMENTATION 1

PEPT Documentation, Release 0.5.2

2 DOCUMENTATION

CHAPTER
ONE

POSITRON EMISSION PARTICLE TRACKING

PEPT is a technique developed at the University of Birmingham which allows the non-invasive, three-dimensional
tracking of one or more ‘tracer’ particles through particulate, fluid or multiphase systems. The technique allows particle
or fluid motion to be tracked with sub-millimetre accuracy and sub-millisecond temporal resolution and, due to its use

of highly-penetrating 511keV gamma rays, can be used to probe the internal dynamics of even large, dense, optically
opaque systems - making it ideal for industrial as well as scientific applications.

PEPT is performed by radioactively labelling a particle with a positron- emitting radioisotope such as fluorine-18 (18F)
or gallium-68 (68Ga), and using the back-to-back gamma rays produced by electron-positron annihilation events in and
around the tracer to triangulate its spatial position. Each detected gamma ray represents a line of response (LoR).

320
300

280

(ww) A

260

(ww) A

240

""‘"—---.-—-...—‘""

200

2

260

+ O, 199590 o 250 6\@\
n) 3t 240 300 1 N

330

Transforming gamma rays, or lines of response (left) into individual tracer trajectories (right) using the pept library.

Depicted is experimental data of two tracers rotating at 42 RPM, imaged using the University of Birmingham Positron
Imaging Centre’s parallel screens PEPT camera.

PEPT Documentation, Release 0.5.2

4 Chapter 1. Positron Emission Particle Tracking

CHAPTER
TWO

TUTORIALS AND DOCUMENTATION

A very fast-paced introduction to Python is available here (Google Colab tutorial link); it is aimed at engineers whose
background might be a few lines written MATLAB, as well as moderate C/C++ programmers.

A beginner-friendly tutorial for using the pept package is available here (Google Colab link).

The links above point to Google Colaboratory, a Jupyter notebook-hosting website that lets you combine text with
Python code, executing it on Google servers. Pretty neat, isn’t it?

https://colab.research.google.com/drive/1Uq8Ppiv8jR-XSVsKZMcCUNuXW-l6n_RI?usp=sharing
https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO

PEPT Documentation, Release 0.5.2

6 Chapter 2. Tutorials and Documentation

CHAPTER
THREE

PERFORMANCE

Significant effort has been put into making the algorithms in this package as fast as possible. Most computation-
ally intensive code has been implemented in Cython, C or C++ and allows policy-based parallel execution, ei-
ther on shared-memory machines using joblib /| ThreadPoolExecutor, or on distributed computing clusters using
mpidpy.futures. MPIPoolExecutor.

PEPT Documentation, Release 0.5.2

8 Chapter 3. Performance

CHAPTER
FOUR

COPYRIGHT

Copyright (C) 2021 the pept developers. Until now, this library was built directly or indirectly through the brain-time

of:

Andrei Leonard Nicusan (University of Birmingham)
Dr. Kit Windows-Yule (University of Birmingham)
Dr. Sam Manger (University of Birmingham)
Matthew Herald (University of Birmingham)

Chris Jones (University of Birmingham)

Mark Al-Shemmeri (University of Birmingham)
Prof. David Parker (University of Birmingham)

Dr. Antoine Renaud (University of Edinburgh)

Dr. Cody Wiggins (Virginia Commonwealth University)
Dawid Michat Hampel

Dr. Tom Leadbeater

Thank you.

PEPT Documentation, Release 0.5.2

10 Chapter 4. Copyright

CHAPTER
FIVE

INDICES AND TABLES

5.1 Getting Started

These instructions will help you get started with PEPT data analysis.

5.1.1 Prerequisites

This package supports Python 3.6 and above - it is built and tested for Python 3.6, 3.7 and 3.8 on Windows, Linux and
macOS (thanks to conda-forge, which is awesome!).

You can install it using the batteries-included Anaconda distribution or the bare-bones Python interpreter. You can also
check out our Python and pept tutorials.

5.1.2 Installation

The easiest and quickest installation, if you are using Anaconda:

conda install -c conda-forge pept

You can also install the latest release version of pept from PyPI:

pip install --upgrade pept

Or you can install the development version from the GitHub repository:

pip install -U git+https://github.com/uob-positron-imaging-centre/pept

5.2 Tutorials

The main purpose of the PEPT library is to provide a common, consistent foundation for PEPT-related algorithms,
including tracer tracking, visualisation and post-processing tools - such that they can be used interchangeably, mixed
and matched for any PEPT camera and system. Virtually all PEPT processing routine follows these steps:

1. Convert raw gamma camera / scanner data into 3D lines (i.e. the captured gamma rays, or lines of response -
LoRs).

2. Take a sample of lines, locate tracer locations, then repeat for the next samples.

3. Separate out individual tracer trajectories.

11

https://conda-forge.org/
https://www.anaconda.com/products/individual
https://www.python.org/downloads/
https://github.com/uob-positron-imaging-centre/tutorials

PEPT Documentation, Release 0.5.2

4. Visualise and post-process trajectories.
For these algorithm-agnostic steps, PEPT provides five base data structures upon which the rest of the library is built:
1. pept.LineData: general 3D line samples, formatted as [time, x1, y1, zI, x2, y2, 72, extra...].
2. pept.PointData: general 3D point samples, formatted as [time, x, y, z, extra...].
3. pept.Pixels: single 2D pixellised space with physical dimensions, including fast line traversal.
4. pept.Voxels: single 3D voxellised space with physical dimensions, including fast line traversal.

For example, once you convert your PEPT data - from any scanner - into pept.LineData, all the algorithms in this
library can be used.

All the data structures above are built on top of NumPy and integrate natively with the rest of the Python / SciPy
ecosystem. The rest of the PEPT library is organised into submodules:

1. pept.scanners: converters between native scanner data and the base data structures.
pept.tracking: radioactive tracer tracking algorithms, e.g. the Birmingham method, PEPT-ML, FPI.
pept.plots: PEPT data visualisation subroutines.

pept.utilities: general-purpose helpers, e.g. read_csv, traverse3d.

wooA »N

pept.processing: PEPT-oriented post-processing algorithms, e.g. VectorField3D.

If you are new to the PEPT library, we recommend going through this interactive online notebook, which introduces
all the fundamental concepts of the library:

https://colab.research.google.com/drive/ 1 GEXHP9zZWMMDVu23PXzANLCOKNP_RjBEO?usp=
sharing

Once you get the idea of LineData samples, Pipeline and PlotlyGrapher, you can use these copy-pastable tutorials
to build PEPT data analysis pipelines tailored to your specific systems.

5.2.1 Absolute Basics

The main purpose of the pept library is to provide a common, consistent foundation for PEPT-related algorithms,
including tracer tracking, visualisation and post-processing tools - such that they can be used interchangeably, mixed
and matched for different systems. Virtually any PEPT processing routine follows these steps:

1. Convert raw gamma camera / scanner data into 3D lines (i.e. the captured gamma rays, or lines of response -
LoRs).

2. Take a sample of lines, locate tracer locations, then repeat for the next samples.
3. Separate out individual tracer trajectories.
4. Visualise and post-process trajectories.
For these algorithm-agnostic steps, pept provides five base data structures upon which the rest of the library is built:
1. pept.LineData: general 3D line samples, formatted as [time, x1, y1, z1I, x2, y2, 72, extra...].
2. pept.PointData: general 3D point samples, formatted as [time, x, y, z, extra...].
3. pept.Pixels: single 2D pixellised space with physical dimensions, including fast line traversal.
4. pept.Voxels: single 3D voxellised space with physical dimensions, including fast line traversal.

All the data structures above are built on top of NumPy and integrate natively with the rest of the Python / SciPy
ecosystem. The rest of the pept library is organised into submodules:

12 Chapter 5. Indices and tables

https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=sharing
https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO?usp=sharing
https://pept.readthedocs.io/en/latest/manual/generated/pept.LineData.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.PointData.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.Pixels.html
https://pept.readthedocs.io/en/latest/manual/generated/pept.Voxels.html

PEPT Documentation, Release 0.5.2

e pept.scanners: converters between native scanner data and the base classes.

e pept.tracking: radioactive tracer tracking algorithms, e.g. the Birmingham method, PEPT-ML, FPI.
e pept.plots: PEPT data visualisation subroutines.

e pept.utilities: general-purpose helpers, e.g. read_csv, traverse3d.

* pept.processing: PEPT-oriented post-processing algorithms, e.g. occupancy2d.

pept.LineData

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each defined by two points, regardless of the geometry
of the scanner used. This class is used to wrap LoRs (or any lines!), efficiently yielding samples of 1ines of an adaptive
sample_size and overlap.

Itis an abstraction over PET / PEPT scanner geometries and data formats, as once the raw LoRs (be they stored as binary,
ASCII, etc.) are transformed into the common LineData format, any tracking, analysis or visualisation algorithm in
the pept package can be used interchangeably. Moreover, it provides a stable, user-friendly interface for iterating over
LoRs in samples - this is useful for tracking algorithms, as they generally take a few LoRs (a sample), produce a tracer
position, then move to the next sample of LoRs, repeating the procedure. Using overlapping samples is also useful for
improving the tracking rate of the algorithms.

Here are some basic examples of creating and using LineData samples - you're very much invited to copy and run
them!

Initialise a LineData instance containing 10 lines with a sample_size of 3.

>>> import pept

>>> import numpy as np

>>> lines_raw = np.arange(70).reshape(10, 7)

>>> print(lines_raw)
[L6O 1 2 3 4 5 6]
[7 8 910 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
[49 50 51 52 53 54 55]
[56 57 58 59 60 61 62]
[63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data

pept.LineData (samples: 3)

sample_size = 3

overlap = 0

lines =
(rows: 10, columns: 7)
[[O6. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
[56. 57. ... 61. 62.]
[63. 64. ... 68. 69.]]

(continues on next page)

5.2. Tutorials 13

https://pept.readthedocs.io/en/latest/manual/scanners.html
https://pept.readthedocs.io/en/latest/manual/tracking.html
https://pept.readthedocs.io/en/latest/manual/plots.html
https://pept.readthedocs.io/en/latest/manual/utilities.html
https://pept.readthedocs.io/en/latest/manual/processing.html

PEPT Documentation, Release 0.5.2

(continued from previous page)

columns

- [ltl’ 'X]_" lyll, lzll, lle’ lyzl’ '22']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

>>> line_data[0]
pept.LineData (samples: 1)
sample_size = 3

overlap = 0

lines =
(rows: 3, columns: 7)
[[O®. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]1]
columns = ['t', 'x1', 'y1', 'zl1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_datal[1]
pept.LineData (samples: 1)
sample_size = 3

overlap = 0

lines =
(rows: 3, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
[35. 36. ... 40. 41.]]
columns = ['t', 'x1', 'yl1', 'zl', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

5.2.2 Saving / Loading Data

All PEPT objects can be saved in an efficient binary format using pept.save and pept.load:

import pept
import numpy as np

Create some dummy data
lines_raw = np.arange(70).reshape((10, 7)
lines = pept.LineData(lines_raw)

(continues on next page)

14 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

(continued from previous page)

Save data
pept.save("data.pickle", lines)

Load data
lines_loaded = pept.load("data.pickle")

The binary approach has the advantage of preserving all your metadata saved in the object instances - e.g. columns,
sample_size - allowing the full state to be reloaded.

Matrix-like data like pept.LineData and pept.PointData can also be saved in a slower, but human-readable CSV
format using their class methods . to_csv; such tabular data can then be reinitialised using pept.read_csv:

Save data in CSV format
lines.to_csv('"data.csv")

Load data back - *this will be a simple NumPy array!*
lines_raw = pept.read_csv('data.csv'")

Need to put the array back into a ‘pept.LineData’
lines = pept.LineData(lines_raw)

5.2.3 Plotting
Interactive 3D Plots

The easiest method of plotting 3D PEPT-like data is using the pept.plots.PlotlyGrapher interactive grapher:

Plotting some example 3D lines
import pept

from pept.plots import PlotlyGrapher
import numpy as np

lines_raw = np.arange(70) .reshape((10, 7))
lines = pept.LineData(lines_raw)

PlotlyGrapher() .add_lines(lines) .show()

Plotting some example 3D points
import pept

from pept.plots import PlotlyGrapher
import numpy as np

points_raw = np.arange(40).reshape((10, 4))
points = pept.PointData(points_raw)

PlotlyGrapher() .add_points(points) .show()

The PlotlyGrapher object allows straightforward subplots creation:

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(cols = 2)

(continues on next page)

5.2. Tutorials 15

PEPT Documentation, Release 0.5.2

(continued from previous page)

grapher.add_lines(lines) # col = 1 by default
grapher.add_points(points, col = 2)

grapher. show()

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(rows = 2, cols = 2)

grapher.add_lines(lines, col = 2) # row = 1 by default
grapher.add_points(points, row = 2, col = 2)

grapher. show()

Adding Colourbars

By default, the last column of a dataset is used to colour-code the resulting points:

from pept.plots import PlotlyGrapher
PlotlyGrapher() .add_points(point_data) .show() # Colour-codes by the last column

You can change the column used to colour-code points using a numeric index (e.g. first column colorbar_col = 0,
second to last column colorbar_col = -2) or named column (e.g. colorbar_col = "error"):

PlotlyGrapher() .add_points(point_data, colorbar_col = -2).show()

PlotlyGrapher() .add_points(point_data, colorbar_col = "label").show() # Coloured by.
—trajectory

PlotlyGrapher() .add_points(point_data, colorbar_col = "v").show() # Coloured by.
—velocity

As a PlotlyGrapher will often manage multiple subplots, one shouldn’t include explicit colourbars on the sides for
each dataset plotted. Therefore, colourbars are hidden by default; add a colourbar by setting its title:

PlotlyGrapher() .add_points(points, colorbar_title = "Velocity").show()

Histogram of Tracking Errors

The Centroids(error = True) filter appends a column “error” representing the relative error in the tracked position.
You can select a named column via indexing, e.g. trajectories["error"]; you can then plot a histogram of the
relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories[""cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

Or simply append the “Condition" to the ‘pept.Pipeline’

(continues on next page)

16 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

(continued from previous page)

pipeline = pept.Pipeline([
Condition("cluster_size > 30, error < 20"),

D

Exporting Plotly Graphs as Images

The standard output of the Plotly grapher is an interactive HTML webpage; however, this can lead to large file sizes or
memory overflows. Plotly allows for graphs to be exported as images to alleviate some of these issues.

Ensure you have imported:

import plotly.express as px
import kaleido
import plotly.io as pio

There are two main ways of exporting as images:

Save the inner plotly.Figure attribute of a ‘grapher’

Format can be changed to other image formats

Width and height can be adjusted to give the desired image size
grapher.fig.write_image("figure.png", width=2560, height=1440)

Modifying the Underlying Figure

You can access the Plotly figure wrapped and managed by a PlotlyGrapher using the . fig attribute:

grapher. fig.update_layout(xaxis_title = "Pipe Length (mm)")

5.2.4 Initialising PEPT Scanner Data
The pept.scanners submodule contains converters between scanner specific data formats (e.g. parallel screens /

ASCII, modular camera / binary) and the pept base classes, allowing simple initialisation of pept.LineData from
different sources.

ADAC Forte

The parallel screens detector used at Birmingham can output binary list-mode data, which can be converted using
pept.scanners.adac_forte(binary_file):

import pept

lines = pept.scanners.adac_forte("binary_file.da®1")

If you have multiple files from the same experiment, e.g. “data.da01”, “data.da02”, etc., you can stitch them all together
using a glob, “data.da*”":

5.2. Tutorials 17

PEPT Documentation, Release 0.5.2

import pept

Multiple files starting with ‘binary_file.da’
lines = pept.scanners.adac_forte("binary_file.da*")

Parallel Screens

If you have your data as a CSV containing 5 columns /¢, x1, y1, x2, y2] representing the coordinates of the two points
defining an LoR on two parallel screens, you can use pept.scanners.parallel_screens to insert the missing
coordinates and get the LoRs into the general LineData format [t, x1, ylI, zI, x2, y2, z2]:

import pept

screen_separation = 500
lines = pept.scanners.parallel_screens(csv_or_array, Screen_separation)

Modular Camera

Your modular camera data can be initialised using pept.scanners.modular_camera:

import pept

lines = pept.scanners.modular_camera(filepath)

5.2.5 Adaptive Sampling

Perhaps the most important decision a PEPT user must make is how the LoRs are divided into samples. The two most
common approaches are:

Fixed sample size: a constant number of elements per sample, with potential overlap between samples.

» Advantages: effectively adapts spatio-temporal resolution, with higher accuracy in more active PEPT scanner
regions.

 Disadvantages: when a tracer exits the field of view, the last LoRs will be joined with the first LoRs when the
tracer re-enters the scanner in the same samples.

Fixed time window: a constant time interval in which LoRs are aggregated, with potential overlap.
* Advantages: robust to tracers moving out of the field of view.
* Disadvantages: non-adaptive temporal resolution.

The two approaches can be combined into a single pept.AdaptiveWindow, which works as a fixed time window,
except when more LoRs are encountered than a given limit, in which case the time window is shrunk - hence adapting
the time window depending on how many LoRs are intercepted in a given window.

import pept

A time window of 5 ms shrinking when encountering more than 200 LoRs
lors = pept.LineData(..., sample_size = pept.AdaptiveWindow(5.0, 200))

A time window of 12 ms with the number of LoRs capped at 400 LoRs and an overlap of 6.

(continues on next page)

18 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

(continued from previous page)

—ms
lors = pept.scanners.adac_forte(
sample_size = pept.AdaptiveWindow(12., 200),
overlap = pept.AdaptiveWindow(6.),

Moreover, if an ideal number of LoRs is selected, there exists an optimum time window for which most samples will
have roughly this ideal number of LoRs, except when the tracer is out of the field of view, or it’s static. This can be
automatically selected using pept.tracking.OptimizeWindow:

import pept
import pept.tracking as pt

Find an adaptive time window that is ideal for about 200 LoRs per sample
lors = pept.LineData(...)
lors = pt.OptimizeWindow(ideal_elems = 200).fit(lors)

OptimizeWindow can be used at the start of a pipeline; an optional overlap parameter can be used to define an overlap
as a ratio to the ideal time window found. For example, if the ideal time window found is 100 ms, an overlap of 0.5
will result in an overlapping time interval of 50 ms:

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
OptimizeWindow(200),
BirminghamMethod(fopt = 0.5),
Stack(),

D

locations = pipeline.fit(lors)

5.2.6 The Birmingham Method

The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.
If you are using it in your research, you are kindly asked to cite the following paper:

Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron emission particle tracking-a
technique for studying flow within engineering equipment. Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1993 Mar
10;326(3):592-607.

5.2. Tutorials 19

PEPT Documentation, Release 0.5.2

Birmingham Method recipe

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Stack(Q),

D

locations = pipeline.fit(lors)

Recipe with Trajectory Separation

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Segregate(window = 20, cut_distance = 10),
Stack(),

D

locations = pipeline.fit(lors)

5.2.7 PEPT-ML

PEPT using Machine Learning is a modern clustering-based tracking method that was developed specifically for noisy,
fast applications.

If you are using PEPT-ML in your research, you are kindly asked to cite the following paper:

Nicusan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of
Scientific Instruments. 2020 Jan 1;91(1):013329.

PEPT-ML one pass of clustering recipe

The LoRs are first converted into Cutpoints, which are then assigned cluster labels using HDBSCAN; the cutpoints are
then grouped into clusters using SplitLabels and the clusters’ Centroids are taken as the particle locations. Finally,
stack all centroids into a single PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Cutpoints(max_distance = 0.5),
HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),

(continues on next page)

20 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(Q),
D

locations = pipeline.fit(lors)

PEPT-ML second pass of clustering recipe
The particle locations will always have a bit of scatter to them; we can tighten those points into accurate, dense trajec-
tories using a second pass of clustering.

Set a very small sample size and maximum overlap to minimise temporal smoothing effects, then recluster the tracer
locations, split according to cluster label, compute centroids, and stack into a final PointData.

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),
Stack(Q),
D

locations2 = pipeline.fit(lors)

PEPT-ML complete recipe

Including two passes of clustering and trajectory separation: Including an example ADAC Forte data initisalisation,
two passes of clustering, trajectory separation, plotting and saving trajectories as CSV.

Import what we need from the ‘pept’ library

import pept

from pept.tracking import *

from pept.plots import PlotlyGrapher, PlotlyGrapher2D

Open interactive plots in the web browser
import plotly
plotly.io.renderers.default = "browser"

Initialise data from file and set sample size and overlap
filepath = "DS1.da®1"
max_tracers = 1

lors = pept.scanners.adac_forte(
filepath,
sample_size = 200 * max_tracers,

(continues on next page)

5.2. Tutorials 21

PEPT Documentation, Release 0.5.2

(continued from previous page)

overlap = 150 * max_tracers,

Select only the first 1000 samples of LoRs for testing; comment out for all
lors = lors[:1000]

Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

First pass of clustering

Cutpoints(max_distance = 0.2),

HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(error = True),

Second pass of clustering

Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),

SplitLabels() + Centroids(),

Trajectory separation
Segregate(window = 20 * max_tracers, cut_distance = 10),
Stack(),

D

Process all samples in ‘lors’ in parallel, using ‘max_workers" threads
trajectories = pipeline.fit(lors)

Save trajectories as CSV
trajectories.to_csv(filepath +

".csv'™)

Save as a fast binary; you can load them back with ‘pept.load("path")"
trajectories.save(filepath + ".pickle")

Plot trajectories - first a 2D timeseries, then all 3D positions
PlotlyGrapher2D() .add_timeseries(trajectories).show()
PlotlyGrapher() .add_points(trajectories).show()

22 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

Example of a Complex Processing Pipeline

This is an example of “production code” used for tracking tracers in pipe flow imaging, where particles enter and leave
the field of view regularly. This pipeline automatically:

Each
in 17

Sets an optimum adaptive time window.

Runs a first pass of clustering, keeping track of the number of LoRs around the tracers (cluster_size) and
relative location error (error).

Removes locations with too few LoRs or large errors.

Sets a new optimum adaptive time window for a second pass of clustering.

Removes spurious points while the tracer is out of the field of view.

Separates out different tracer trajectories, removes the ones with too few points and groups them by trajectory.
Computes the tracer velocity at each location on each trajectory.

Removes locations at the edges of the detectors.

individual step could be an entire program on its own; with the PEPT Pipeline architecture, they can be chained
lines of Python code, automatically using all processors available on parallelisable sections.

Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

OptimizeWindow(200, overlap = 0.5) + Debug(l),

First pass of clustering

Cutpoints(max_distance = 0.2),

HDBSCAN(true_fraction = 0.15),

SplitLabels() + Centroids(cluster_size = True, error = True),

Remove erroneous points
Condition("cluster_size > 30, error < 20"),

Second pass of clustering
OptimizeWindow(30, overlap = 0.95) + Debug(l),
HDBSCAN(true_fraction = 0.6),

SplitLabels() + Centroids(),

Remove sparse points in time
OutOfViewFilter(200.),

Trajectory separation

Segregate(window = 20, cut_distance = 20, min_trajectory_size = 20),
Condition("label >= 0"),

GroupBy ("label™),

Velocity computation
Velocity(11),
Velocity(l1l, absolute = True),

Cutoff points outside this region
Condition("y > 100, y < 500"),

(continues on next page)

5.2.

Tutorials 23

PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(Q),
D

5.2.8 Feature Point Identification
FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers in fast
and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe flows at the Virginia Commonwealth University.
If you use this algorithm in your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle track-
ing with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment. 2017 Jan 21; 843:22-8.

FPI Recipe

As FPI works on voxelized representations of the LoRs, the Voxelize filter is first used before FPI itself:

import pept
from pept.tracking import *

resolution = (100, 100, 100)

pipeline = pept.Pipeline([
Voxelize(resolution),
FPI(w = 3, r = 0.4),
Stack(Q),

D

locations = pipeline.fit(lors)

5.2.9 Tracking Errors

When processing more difficult datasets - scattering environments, low tracer activities, etc. - it is often useful to use
some tracer statistics to remove erroneous locations.

Most PEPT algorithms will include some measure of the tracer location errors, for example:

* The Centroids(error = True) filter appends a column “error” representing the standard deviation of the
distances from the computed centroid to the constituent points. For a 500 mm scanner, a spread in a tracer
location of 100 mm is clearly an erroneous point.

e The Centroids(cluster_size = True) filter appends a column “cluster_size” representing the number of
points used to compute the centroid. If a sample of 200 LoRs yields a tracer location computed from 5 points, it
is clearly noise.

¢ The BirminghamMethod filter includes a column “error” representing the standard deviation of the distances
from the tracer position to the constituent LoRs.

24 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

Histogram of Tracking Errors

You can select a named column via string indexing, e.g. trajectories["error"]; you can then plot a histogram of
the relative errors with:

import plotly.express as px
px.histogram(trajectories["error"]).show() # Large values are noise
px.histogram(trajectories[""cluster_size"]).show() # Small values are noise

It is often useful to remove points with an error higher than a certain value, e.g. 20 mm:

trajectories = Condition("error < 20").fit(trajectories)

Or simply append the “Condition to the ‘pept.Pipeline’
pipeline = pept.Pipeline([

Condition("cluster_size > 30, error < 20"),

D

5.2.10 Trajectory Separation

Segregate Points

We can separate out trajectory segments / points that are spatio-temporally far away to:
1. Remove spurious, noisy points.
2. Separate out continuous trajectory segments.

The spatio-temporal metric differentiates between points that may be in the same location at different times. This is
achieved by allowing points to be connected in a sliding window approach.

The pept.tracking.Segregate algorithm works by creating a Minimum Spanning Tree (MST, or minimum distance
path) connecting all points in a dataset, then cutting all paths longer than a cut_distance. All distinct segments are
assigned a trajectory 'label' (integer starting from 0); trajectories with fewer than min_trajectory_size points
are considered noise (label -7).

from pept.tracking import *

trajectories = Segregate(window = 20, cut_distance = 10.).fit(trajectories)

Consider all trajectories with fewer than 50 points to be noise:

segr = Segregate(
window = 20,
cut_distance = 10.,
min_trajectory_size = 50,

trajectories = segr.fit(trajectories)

This step adds a new column “label”. We can group each individual trajectory into a list with GroupBy:

5.2. Tutorials 25

PEPT Documentation, Release 0.5.2

traj_list = GroupBy('"label™).fit(trajectories)
traj_list[0] # First trajectory

[New in pept-0.5.2] Only connect points within a time interval; in other words, disconnect into different trajectories
points whose timestamps are further apart than max_time_interval:

segr = Segregate(
window = 20,
cut_distance = 10.,
min_trajectory_size = 50,
max_time_interval = 2000, # Disconnect tracer with >2s gap

trajectories = segr.fit(trajectories)

5.2.11 Filtering Data

There are many filters in pept.tracking, you can check out the Manual at the top of the page for a complete list.
Here are examples with the most important ones.

Remove

Simply remove a column:

from pept.tracking import *

trajectories = Remove('label™).fit(trajectories)

Or multiple columns:

trajectories = Remove('"label", "error").fit(trajectories)

Condition

One of the most important filters, selecting only data that satisfies a condition:

from pept.tracking import *

trajectories = Condition("error < 15").fit(trajectories)

Or multiple ones:

trajectories = Condition("error < 15, label >= 0").fit(trajectories)

In the simplest case, you just use the column name as the first argument followed by a comparison. If the column
name is not the first argument, you must use single quotes:

trajectories = Condition("0® <= 'label'").fit(trajectories)

You can also use filtering functions from NumPy in the condition string (i.e. anything returning a boolean mask):

26 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

Remove all NaNs and Infs from the 'x' column
trajectories = Condition('np.isfinite('x"')")

Finally, you can supply your own function receiving a NumPy array of the data and returning a boolean mask:

def last_column_filter(data):
return datal[:, -1] > 10

trajectories = Condition(last_column_filter).fit(trajectories)

Or using inline functions (i.e. 1lambda):

Select points within a vertical cylinder with radius 10
trajectories = Condition(lambda x: x[:, 1]**2 + x[:, 3]**2 < 10**2).fit(trajectories)

SamplesCondition

While Condition is applied on individual points, we could filter entire samples - for example, select only trajectories
with more than 30 points:

import pept.tracking as pt

long_trajectories_filter = pept.Pipeline([
Segregate points - appends "label" column
pt.Segregate(window = 20, cut_distance = 10),

Group points into samples; e.g. sample 1 contains all points with label 1
pt.GroupBy("label"),

Now each sample is an entire trajectory which we can filter
pt.SamplesCondition("sample_size > 30"),

And stack all remaining samples back into a single PointData
pt.Stack(Q),
D

long_trajectories = long_trajectories_filter.fit(trajectories)

The condition can be based on the sample itself, e.g. keep only samples that lie completely beyond x=0:

Keep only samples for which all points' X coordinates are bigger than 0
Condition("np.all(sample['x"'] > 0)")

5.2. Tutorials 27

PEPT Documentation, Release 0.5.2

GroupBy

Stack all samples (i.e. LineData or PointData) and split them into a list according to a named / numeric column
index:

from pept.tracking import *

group_list = GroupBy('label™).fit(trajectories)

RemoveStatic

Remove tracer locations when it spends more than time_window without moving more than max_distance:

from pept.tracking import *

Remove positions that spent more than 2 seconds without moving more than 20 mm
nonstatic = RemoveStatic(time_window = 2000, max_distance = 20).fit(trajectories)

5.2.12 Extracting Velocities

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to
sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often
in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular
timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label,
then Interpolate into regular timesteps, then compute each point’s Velocity (dimension-wise or absolute) and
finally Stack them back into a PointData:

from pept.tracking import *

pipe_vel = pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy ("label™),
Interpolate(timestep = 5.),
Velocity(window = 7),
Stack(Q),

D

trajectories = pipe_vel.fit(trajectories)

The Velocity step appends columns ["vx", "vy", "vz"] (default) or ["v"] (if absolute = True). You can
add both if you wish:

from pept.tracking import *

pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy ("label™),
Interpolate(timestep = 5.),
Velocity(window = 7), # Appends vx, vy, vz
Velocity(window = 7, absolute = True), # Appends v

(continues on next page)

28 Chapter 5. Indices and tables

PEPT Documentation, Release 0.5.2

(continued from previous page)

Stack(Q),
D

5.2.13 Interpolating Timesteps

When extracting post-processed data from tracer trajectories for e.g. probability distributions, it is often important to
sample data at fixed timesteps. As PEPT is natively a Lagrangian technique where tracers can be tracked more often
in more sensitive areas of the gamma scanners, we have to convert those “randomly-sampled” positions into regular
timesteps using Interpolate.

First, Segregate points into individual, continuous trajectory segments, GroupBy according to each trajectory’s label,
then Interpolate into regular timesteps and finally Stack them back into a PointData:

from pept.tracking import *

pipe = pept.Pipeline([
Segregate(window = 20, cut_distance = 10.),
GroupBy("label™),
Interpolate(timestep = 5.),
Stack(),
D

trajectories = pipe.fit(trajectories)

5.3 Manual

All public pept subroutines are fully documented here, along with copy-pastable examples. The base functionality is
summarised below; the rest of the library is organised into submodules, which you can access on the left. You can also
use the Search bar in the top left to go directly to what you need.

We really appreciate all help with writing useful documentation; if you feel something can be improved, or would like
to share some example code, by all means get in contact with us - or be a superhero and click Edit this page on the right
and submit your changes to the GitHub repository directly!

5.3.1 Base Functions

pept.read_csv(filepath_or_buffer|, ...]) Read a given number of lines from a file and return a
numpy array of the values.

pept. load(filepath) Load a binary saved / pickled object from filepath.

pept. save(filepath, obj) Save an object obj instance as a binary file at filepath.

5.3. Manual 29

PEPT Documentation, Release 0.5.2

pept.read_csv

pept.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float’>, sep="\s+', header=None,
engine='c’, na_{filter=False, quoting=3, memory_map=True, **kwargs)

Read a given number of lines from a file and return a numpy array of the values.

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it reads from a space-separated values file at filepath_or_buffer, optionally skipping skiprows
lines and reading in nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters

filepath_or_buffer
[str, path object or file-like object] Any valid string path is acceptable. The string
could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host
is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a
path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with a
read() method, such as a file handler (e.g. via builtin open function) or StringlO.

skiprows
[list-like, int or callable (), optional] Line numbers to skip (0-indexed) or number of lines
to skip (int) at the start of the file.

Nrows
[int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype
[Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep
[str, default “s+7] Delimiter to use. Separators longer than 1 character and different
from ‘s+ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header
[int, list of int, “infer”, optional] Row number(s) to use as the column names, and the
start of the data. By default assume there is no header present (i.e. header = None).

engine
[{‘c’, ‘python’}, defa