
pept Documentation
Release 0.4.1

pept maintainers

Sep 09, 2021

DOCUMENTATION

1 Positron Emission Particle Tracking 3

2 Tutorials and Documentation 5

3 Performance 7

4 Copyright 9

5 Indices and tables 11
5.1 Getting Started . 11
5.2 Tutorials . 11
5.3 Manual . 16
5.4 Contributing . 212
5.5 Citing . 213

Bibliography 215

Python Module Index 217

Index 219

i

ii

pept Documentation, Release 0.4.1

A Python library that unifies Positron Emission Particle Tracking (PEPT) research, including tracking, simulation, data
analysis and visualisation tools.

DOCUMENTATION 1

pept Documentation, Release 0.4.1

2 DOCUMENTATION

CHAPTER

ONE

POSITRON EMISSION PARTICLE TRACKING

PEPT is a technique developed at the University of Birmingham which allows the non-invasive, three-dimensional
tracking of one or more ‘tracer’ particles through particulate, fluid or multiphase systems. The technique allows particle
or fluid motion to be tracked with sub-millimetre accuracy and sub-millisecond temporal resolution and, due to its use
of highly-penetrating 511keV gamma rays, can be used to probe the internal dynamics of even large, dense, optically
opaque systems - making it ideal for industrial as well as scientific applications.

PEPT is performed by radioactively labelling a particle with a positron- emitting radioisotope such as fluorine-18 (18F)
or gallium-68 (68Ga), and using the back-to-back gamma rays produced by electron-positron annihilation events in and
around the tracer to triangulate its spatial position. Each detected gamma ray represents a line of response (LoR).

Transforming gamma rays, or lines of response (left) into individual tracer trajectories (right) using the pept library.
Depicted is experimental data of two tracers rotating at 42 RPM, imaged using the University of Birmingham Positron
Imaging Centre’s parallel screens PEPT camera.

3

pept Documentation, Release 0.4.1

4 Chapter 1. Positron Emission Particle Tracking

CHAPTER

TWO

TUTORIALS AND DOCUMENTATION

A very fast-paced introduction to Python is available here (Google Colab tutorial link); it is aimed at engineers whose
background might be a few lines written MATLAB, as well as moderate C/C++ programmers.

A beginner-friendly tutorial for using the pept package is available here (Google Colab link).

The links above point to Google Colaboratory, a Jupyter notebook-hosting website that lets you combine text with
Python code, executing it on Google servers. Pretty neat, isn’t it?

5

https://colab.research.google.com/drive/1Uq8Ppiv8jR-XSVsKZMcCUNuXW-l6n_RI?usp=sharing
https://colab.research.google.com/drive/1G8XHP9zWMMDVu23PXzANLCOKNP_RjBEO

pept Documentation, Release 0.4.1

6 Chapter 2. Tutorials and Documentation

CHAPTER

THREE

PERFORMANCE

Significant effort has been put into making the algorithms in this package as fast as possible. Most computation-
ally intensive code has been implemented in Cython, C or C++ and allows policy-based parallel execution, ei-
ther on shared-memory machines using joblib / ThreadPoolExecutor, or on distributed computing clusters using
mpi4py.futures.MPIPoolExecutor.

7

pept Documentation, Release 0.4.1

8 Chapter 3. Performance

CHAPTER

FOUR

COPYRIGHT

Copyright (C) 2021 the pept developers. Until now, this library was built directly or indirectly through the brain-time
of:

• Andrei Leonard Nicusan (University of Birmingham)

• Dr. Kit Windows-Yule (University of Birmingham)

• Dr. Sam Manger (University of Birmingham)

• Matthew Herald (University of Birmingham)

• Chris Jones (University of Birmingham)

• Prof. David Parker (University of Birmingham)

• Dr. Antoine Renaud (University of Edinburgh)

• Dr. Cody Wiggins (Virginia Commonwealth University)

Thank you.

9

pept Documentation, Release 0.4.1

10 Chapter 4. Copyright

CHAPTER

FIVE

INDICES AND TABLES

5.1 Getting Started

These instructions will help you get started with PEPT data analysis.

5.1.1 Prerequisites

This package supports Python 3.6 and above - it is built and tested for Python 3.6, 3.7 and 3.8 on Windows, Linux and
macOS (thanks to conda-forge, which is awesome!).

You can install it using the batteries-included Anaconda distribution or the bare-bones Python interpreter. You can also
check out our Python and pept tutorials.

5.1.2 Installation

The easiest and quickest installation, if you are using Anaconda:

conda install -c conda-forge pept

You can also install the latest release version of pept from PyPI:

pip install --upgrade pept

Or you can install the development version from the GitHub repository:

pip install -U git+https://github.com/uob-positron-imaging-centre/pept

5.2 Tutorials

This part contains copy-pastable tutorials for using the pept library to initialise, track, post-process and visualise your
PEPT data.

11

https://conda-forge.org/
https://www.anaconda.com/products/individual
https://www.python.org/downloads/
https://github.com/uob-positron-imaging-centre/tutorials

pept Documentation, Release 0.4.1

5.2.1 Saving / Loading Data

All PEPT objects can be saved in an efficient binary format using pept.save and pept.load:

import pept
import numpy as np

Create some dummy data
lines_raw = np.arange(70).reshape((10, 7)
lines = pept.LineData(lines_raw)

Save data
pept.save("data.pickle", lines)

Load data
lines_loaded = pept.load("data.pickle")

The binary approach has the advantage of preserving all your metadata saved in the object instances - e.g. columns,
sample_size - allowing the full state to be reloaded.

Matrix-like data like pept.LineData and pept.PointData can also be saved in a slower, but human-readable CSV
format using their class methods .to_csv; such tabular data can then be reinitialised using pept.read_csv:

Save data in CSV format
lines.to_csv("data.csv")

Load data back - *this will be a simple NumPy array!*
lines_raw = pept.read_csv("data.csv")

Need to put the array back into a `pept.LineData`
lines = pept.LineData(lines_raw)

5.2.2 Plotting

Interactive 3D Plots

The easiest method of plotting 3D PEPT-like data is using the pept.plots.PlotlyGrapher interactive grapher:

Plotting some example 3D lines
import pept
from pept.plots import PlotlyGrapher
import numpy as np

lines_raw = np.arange(70).reshape((10, 7)
lines = pept.LineData(lines_raw)

PlotlyGrapher().add_lines(lines).show()

Plotting some example 3D points
import pept
from pept.plots import PlotlyGrapher
import numpy as np

(continues on next page)

12 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

(continued from previous page)

points_raw = np.arange(40).reshape((10, 4)
points = pept.PointData(points_raw)

PlotlyGrapher().add_points(points).show()

The PlotlyGrapher object allows straightforward subplots creation:

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(cols = 2)

grapher.add_lines(lines) # col = 1 by default
grapher.add_points(points, col = 2)

grapher.show()

Plot the example 3D lines and points on separate subplots
grapher = PlotlyGrapher(rows = 2, cols = 2)

grapher.add_lines(lines, col = 2) # row = 1 by default
grapher.add_points(points, row = 2, col = 2)

grapher.show()

5.2.3 Initialising PEPT Scanner Data

The pept.scanners submodule contains converters between scanner specific data formats (e.g. parallel screens /
ASCII, modular camera / binary) and the pept base classes, allowing simple initialisation of pept.LineData from
different sources.

ADAC Forte

The parallel screens detector used at Birmingham can output binary list-mode data, which can be converted using
pept.scanners.adac_forte(binary_file):

import pept

lines = pept.scanners.adac_forte("binary_file.da01")

Parallel Screens

If you have your data as a CSV containing 5 columns [t, x1, y1, x2, y2] representing the coordinates of the two points
defining an LoR on two parallel screens, you can use pept.scanners.parallel_screens to insert the missing
coordinates and get the LoRs into the general LineData format [t, x1, y1, z1, x2, y2, z2]:

import pept

screen_separation = 500
lines = pept.scanners.parallel_screens(csv_or_array, screen_separation)

5.2. Tutorials 13

pept Documentation, Release 0.4.1

Modular Camera

Your modular camera data can be initialised using pept.scanners.modular_camera:

import pept

lines = pept.scanners.modular_camera(filepath)

5.2.4 PEPT-ML

PEPT-ML one pass of clustering recipe

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Cutpoints(max_distance = 0.5),
HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(),
Stack(),

])

locations = pipeline.fit(lors)

PEPT-ML second pass of clustering recipe

import pept
from pept.tracking import *

max_tracers = 1

pipeline = pept.Pipeline([
Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
SplitLabels() + Centroids(),
Stack(),

])

locations2 = pipeline.fit(lors)

14 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

PEPT-ML complete recipe

Including two passes of clustering and trajectory separation: Including an example ADAC Forte data initisalisation,
two passes of clustering, trajectory separation, plotting and saving trajectories as CSV.

Import what we need from the `pept` library
import pept
from pept.tracking import *
from pept.plots import PlotlyGrapher, PlotlyGrapher2D

Open interactive plots in the web browser
import plotly
plotly.io.renderers.default = "browser"

Initialise data from file and set sample size and overlap
filepath = "DS1.da01"
max_tracers = 1

lors = pept.scanners.adac_forte(
filepath,
sample_size = 200 * max_tracers,
overlap = 150 * max_tracers,

)

Select only the first 1000 samples of LoRs for testing; comment out for all
lors = lors[:1000]

Create PEPT-ML processing pipeline
pipeline = pept.Pipeline([

First pass of clustering
Cutpoints(max_distance = 0.5),
HDBSCAN(true_fraction = 0.15, max_tracers = max_tracers),
SplitLabels() + Centroids(),

Second pass of clustering
Stack(sample_size = 30 * max_tracers, overlap = 30 * max_tracers - 1),
HDBSCAN(true_fraction = 0.6, max_tracers = max_tracers),
SplitLabels() + Centroids(),

Trajectory separation
Segregate(window = 20 * max_tracers, cut_distance = 10),

])

Process all samples in `lors` in parallel, using `max_workers` threads
trajectories = pipeline.fit(lors, max_workers = 16)

(continues on next page)

5.2. Tutorials 15

pept Documentation, Release 0.4.1

(continued from previous page)

Save trajectories as CSV
trajectories.to_csv(filepath + ".csv")

Plot trajectories - first a 2D timeseries, then all 3D positions
PlotlyGrapher2D().add_timeseries(trajectories).show()
PlotlyGrapher().add_points(trajectories).show()

5.2.5 The Birmingham Method

Birmingham method recipe:

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Stack(),

])

locations = pipeline.fit(lors)

Recipe with Trajectory Separation

import pept
from pept.tracking import *

pipeline = pept.Pipeline([
BirminghamMethod(fopt = 0.5),
Segregate(window = 20, cut_distance = 10),

])

locations = pipeline.fit(lors)

5.3 Manual

All public pept subroutines are fully documented here, along with copy-pastable examples. The base functionality is
summarised below; the rest of the library is organised into submodules, which you can access on the left. You can also
use the Search bar in the top left to go directly to what you need.

We really appreciate all help with writing useful documentation; if you feel something can be improved, or would like
to share some example code, by all means get in contact with us - or be a superhero and click Edit this page on the right
and submit your changes to the GitHub repository directly!

16 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

5.3.1 Base Functions

pept.read_csv(filepath_or_buffer[, . . .]) Read a given number of lines from a file and return a
numpy array of the values.

pept.load(filepath) Load a binary saved / pickled object from filepath.
pept.save(filepath, obj) Save an object obj instance as a binary file at filepath.

pept.read_csv

pept.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+', header=None,
engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

Read a given number of lines from a file and return a numpy array of the values.

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it reads from a space-separated values file at filepath_or_buffer, optionally skipping skiprows
lines and reading in nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer [str, path object or file-like object] Any valid string path is acceptable.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs,
a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to
pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects
with a read() method, such as a file handler (e.g. via builtin open function) or StringIO.

skiprows [list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number
of lines to skip (int) at the start of the file.

nrows [int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype [Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep [str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header [int, list of int, “infer”, optional] Row number(s) to use as the column names, and
the start of the data. By default assume there is no header present (i.e. header = None).

engine [{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the
python engine is currently more feature-complete.

na_filter [bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting [int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting
behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map [bool, default True] If a filepath is provided for filepath_or_buffer, map the
file object directly onto memory and access the data directly from there. Using this option
can improve performance because there is no longer any I/O overhead.

5.3. Manual 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

pept Documentation, Release 0.4.1

kwargs [optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.load

pept.load(filepath)
Load a binary saved / pickled object from filepath.

Most often the full object state was saved using the pept.save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
object The loaded Python object instance (e.g. pept.LineData).

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

pept.save

pept.save(filepath, obj)
Save an object obj instance as a binary file at filepath.

Saves the full object state, including e.g. the inner .lines NumPy array, sample_size, etc. in a fast, portable binary
format. Load back the object using the pept.load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

obj [object] Any - tipically PEPT-oriented - object to be saved in the binary pickle format.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> pept.save("lines.pickle", lines)

>>> lines_reloaded = pept.load("lines.pickle")

18 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

5.3.2 Base Classes

pept.LineData(lines[, sample_size, overlap, . . .]) A class for PEPT LoR data iteration, manipulation and
visualisation.

pept.PointData(points[, sample_size, . . .]) A class for general PEPT point-like data iteration, ma-
nipulation and visualisation.

pept.Pixels(pixels_array, xlim, ylim) A class that manages a 2D pixel space, including tools
for pixel traversal of lines, manipulation and visualisa-
tion.

pept.Voxels(voxels_array, xlim, ylim, zlim) A class that manages a single 3D voxel space, includ-
ing tools for voxel traversal of lines, manipulation and
visualisation.

pept.Pipeline(transformers) A PEPT processing pipeline, chaining multiple Filter
and Reducer for efficient, parallel execution.

pept.LineData

class pept.LineData(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'],
**kwargs)

Bases: pept.base.iterable_samples.IterableSamples

A class for PEPT LoR data iteration, manipulation and visualisation.

Generally, PEPT Lines of Response (LoRs) are lines in 3D space, each defined by two points, regardless of the
geometry of the scanner used. This class is used for the encapsulation of LoRs (or any lines!), efficiently yielding
samples of lines of an adaptive sample_size and overlap.

It is an abstraction over PET / PEPT scanner geometries and data formats, as once the raw LoRs (be they stored
as binary, ASCII, etc.) are transformed into the common LineData format, any tracking, analysis or visualisation
algorithm in the pept package can be used interchangeably. Moreover, it provides a stable, user-friendly interface
for iterating over LoRs in samples - this is useful for tracking algorithms, as they generally take a few LoRs (a
sample), produce a tracer position, then move to the next sample of LoRs, repeating the procedure. Using
overlapping samples is also useful for improving the tracking rate of the algorithms.

This is the base class for LoR data; the subroutines for transforming other data formats into LineData can be found
in pept.scanners. If you’d like to integrate another scanner geometry or raw data format into this package, you can
check out the pept.scanners.parallel_screens module as an example. This usually only involves writing a single
function by hand; then all attributes and methods from LineData will be available to your new data format. If
you’d like to use LineData as the base for other algorithms, you can check out the pept.tracking.peptml.cutpoints
module as an example; the Cutpoints class iterates the samples of LoRs in any LineData in parallel, using
concurrent.futures.ThreadPoolExecutor.

See also:

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.read_csv Fast CSV file reading into numpy arrays.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

pept.tracking.Cutpoints Compute cutpoints from pept.LineData.

5.3. Manual 19

pept Documentation, Release 0.4.1

Notes

The class saves lines as a C-contiguous numpy array for efficient access in C / Cython functions. The inner data
can be mutated, but do not change the number of rows or columns after instantiating the class.

Examples

Initialise a LineData instance containing 10 lines with a sample_size of 3.

>>> import pept
>>> import numpy as np
>>> lines_raw = np.arange(70).reshape(10, 7)
>>> print(lines_raw)
[[0 1 2 3 4 5 6]
[7 8 9 10 11 12 13]
[14 15 16 17 18 19 20]
[21 22 23 24 25 26 27]
[28 29 30 31 32 33 34]
[35 36 37 38 39 40 41]
[42 43 44 45 46 47 48]
[49 50 51 52 53 54 55]
[56 57 58 59 60 61 62]
[63 64 65 66 67 68 69]]

>>> line_data = pept.LineData(lines_raw, sample_size = 3)
>>> line_data
pept.LineData (samples: 3)

sample_size = 3
overlap = 0
lines =
(rows: 10, columns: 7)
[[0. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
...
[56. 57. ... 61. 62.]
[63. 64. ... 68. 69.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[0. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]]

(continues on next page)

20 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

(continued from previous page)

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
[35. 36. ... 40. 41.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(line_data) # Number of samples
3

>>> line_data.overlap = 2
>>> len(line_data)
8

Notice how rows are repeated from one sample to the next when accessing them, because overlap is now 2:

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[0. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 3
overlap = 0
lines =
(rows: 3, columns: 7)
[[7. 8. ... 12. 13.]
[14. 15. ... 19. 20.]
[21. 22. ... 26. 27.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

5.3. Manual 21

pept Documentation, Release 0.4.1

Now change sample_size to 5 and notice again how the number of samples changes:

>>> len(line_data)
8

>>> line_data.sample_size = 5
>>> len(line_data)
2

>>> line_data[0]
pept.LineData (samples: 1)

sample_size = 5
overlap = 0
lines =
(rows: 5, columns: 7)
[[0. 1. ... 5. 6.]
[7. 8. ... 12. 13.]
...
[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

>>> line_data[1]
pept.LineData (samples: 1)

sample_size = 5
overlap = 0
lines =
(rows: 5, columns: 7)
[[21. 22. ... 26. 27.]
[28. 29. ... 33. 34.]
...
[42. 43. ... 47. 48.]
[49. 50. ... 54. 55.]]

columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']
attrs = {}

Notice how the samples do not cover the whole input lines_raw array, as the last lines are omitted - think of the
sample_size and overlap. They are still inside the inner lines attribute of line_data though:

>>> line_data.lines
array([[0., 1., 2., 3., 4., 5., 6.],

[7., 8., 9., 10., 11., 12., 13.],
[14., 15., 16., 17., 18., 19., 20.],
[21., 22., 23., 24., 25., 26., 27.],
[28., 29., 30., 31., 32., 33., 34.],
[35., 36., 37., 38., 39., 40., 41.],
[42., 43., 44., 45., 46., 47., 48.],
[49., 50., 51., 52., 53., 54., 55.],
[56., 57., 58., 59., 60., 61., 62.],
[63., 64., 65., 66., 67., 68., 69.]])

22 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Attributes
lines [(N, M>=7) numpy.ndarray] An (N, M>=7) numpy array that stores the PEPT LoRs as

time and cartesian (3D) coordinates of two points defining a line, followed by any additional
data. The data columns are then [time, x1, y1, z1, x2, y2, z2, etc.].

sample_size [int, list[int], pept.TimeWindow or None] Defining the number of LoRs in a
sample; if it is an integer, a constant number of LoRs are returned per sample. If it is a list of
integers, sample i will have length sample_size[i]. If it is a pept.TimeWindow instance, each
sample will span a fixed time window. If None, custom sample sizes are returned as per the
samples_indices attribute.

overlap [int, pept.TimeWindow or None] Defining the overlapping LoRs between consecutive
samples. If int, constant numbers of LoRs are used. If pept.TimeWindow, the overlap will be
a constant time window across the data timestamps (first column). If None, custom sample
sizes are defined as per the samples_indices attribute.

samples_indices [(S, 2) numpy.ndarray] A 2D NumPy array of integers, where row i de-
fines the i-th sample’s start and end row indices, i.e. sample[i] == data[samples_indices[i,
0]:samples_indices[i, 1]]. The sample_size and overlap are simply friendly interfaces to
setting the samples_indices.

columns [(M,) list[str]] A list of strings with the same number of columns as lines containing
each column’s name.

attrs [dict[str, Any]] A dictionary of other attributes saved on this class. Attribute names
starting with an underscore are considered “hidden”.

__init__(lines, sample_size=None, overlap=None, columns=['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2'], **kwargs)
LineData class constructor.

Parameters
lines [(N, M>=7) numpy.ndarray] An (N, M>=7) numpy array that stores the PEPT LoRs

(or any generic set of lines) as time and cartesian (3D) coordinates of two points defining
each line, followed by any additional data. The data columns are then [time, x1, y1, z1, x2,
y2, z2, etc.].

sample_size [int, default 0] An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the data as one single sample.

overlap [int, default 0] An int that defines the overlap between two consecutive samples
that are returned when iterating over lines. An overlap of 0 means consecutive samples,
while an overlap of (sample_size - 1) means incrementing the samples by one. A negative
overlap means skipping values between samples. An error is raised if overlap is larger than
or equal to sample_size.

columns [List[str], default [“t”, “x1”, “y1”, “z1”, “x2”, “y2”, “z2”]] A list of strings
corresponding to the column labels in points.

**kwargs [extra keyword arguments] Any extra attributes to set in .attrs.

Raises
ValueError If lines has fewer than 7 columns.

ValueError If overlap >= sample_size unless sample_size is 0. Overlap has to be smaller
than sample_size. Note that it can also be negative.

5.3. Manual 23

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Methods

__init__(lines[, sample_size, overlap, columns]) LineData class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

plot([sample_indices, ax, alt_axes, . . .]) Plot lines from selected samples using matplotlib.
save(filepath) Save a PEPTObject instance as a binary pickle object.
to_csv(filepath[, delimiter]) Write lines to a CSV file.

Attributes

attrs

columns

data

lines

overlap

sample_size

samples_indices

property lines

to_csv(filepath, delimiter=' ')
Write lines to a CSV file.

Write all LoRs stored in the class to a CSV file.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

delimiter [str, default ” “] The delimiter used to separate the values in the CSV file.

plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=0)
Plot lines from selected samples using matplotlib.

Returns matplotlib figure and axes objects containing all lines included in the samples selected by sam-
ple_indices. sample_indices may be a single sample index (e.g. 0), an iterable of indices (e.g. [1,5,6]), or
an Ellipsis (. . .) for all samples.

Parameters

24 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

sample_indices [int or iterable or Ellipsis, default Ellipsis] The index or indices
of the samples of lines. An int signifies the sample index, an iterable (list-like) signifies
multiple sample indices, while an Ellipsis (. . .) signifies all samples. The default is . . . (all
lines).

ax [mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes [bool, default False] If True, plot using the alternative PEPT-style axes con-
vention: z is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is
achieved by swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z,
x, y)).

colorbar_col [int, default -1] The column in the data samples that will be used to color
the lines. The default is -1 (the last column).

Returns
fig, ax [matplotlib figure and axes objects]

Notes

Plotting all lines is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use the faster pept.plots.PlotlyGrapher.

Examples

Plot the lines from sample 1 in a LineData instance:

>>> lors = pept.LineData(...)
>>> fig, ax = lors.plot(1)
>>> fig.show()

Plot the lines from samples 0, 1 and 2:

>>> fig, ax = lors.plot([0, 1, 2])
>>> fig.show()

property attrs

property columns

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

property data

extra_attrs()

hidden_attrs()

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

5.3. Manual 25

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property overlap

property sample_size

property samples_indices

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.PointData

class pept.PointData(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)
Bases: pept.base.iterable_samples.IterableSamples

A class for general PEPT point-like data iteration, manipulation and visualisation.

In the context of positron-based particle tracking, points are defined by a timestamp, 3D coordinates and any other
extra information (such as trajectory label or some tracer signature). This class is used for the encapsulation of 3D
points - be they tracer locations, cutpoints, etc. -, efficiently yielding samples of points of an adaptive sample_size
and overlap.

26 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Much like a complement to LineData, PointData is an abstraction over point-like data that may be encountered in
the context of PEPT (e.g. pre-tracked tracer locations), as once the raw points are transformed into the common
PointData format, any tracking, analysis or visualisation algorithm in the pept package can be used interchange-
ably. Moreover, it provides a stable, user-friendly interface for iterating over points in samples - this can be useful
for tracking algorithms, as some take a few points (a sample), produce an accurate tracer location, then move to
the next sample of points, repeating the procedure. Using overlapping samples is also useful for improving the
time resolution of the algorithms.

This is the base class for point-like data; subroutines that accept and/or return PointData instances (or subclasses
thereof) can be found throughout the pept package. If you’d like to create new algorithms based on them, you
can check out the pept.tracking.peptml.cutpoints module as an example; the Cutpoints class receives a LineData
instance, transforms the samples of LoRs into cutpoints, then initialises itself as a PointData subclass - thereby
inheriting all its methods and attributes.

Raises
ValueError If overlap >= sample_size. Overlap is required to be smaller than sample_size,

unless sample_size is 0. Note that it can also be negative.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.read_csv Fast CSV file reading into numpy arrays.

pept.plots.PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

pept.tracking.Cutpoints Compute cutpoints from pept.LineData.

Notes

This class saves points as a C-contiguous numpy array for efficient access in C / Cython functions. The inner
data can be mutated, but do not change the number of rows or columns after instantiating the class.

Examples

Initialise a PointData instance containing 10 points with a sample_size of 3.

>>> import numpy as np
>>> import pept
>>> points_raw = np.arange(40).reshape(10, 4)
>>> print(points_raw)
[[0 1 2 3]
[4 5 6 7]
[8 9 10 11]
[12 13 14 15]
[16 17 18 19]
[20 21 22 23]
[24 25 26 27]
[28 29 30 31]
[32 33 34 35]
[36 37 38 39]]

>>> point_data = pept.PointData(points_raw, sample_size = 3)
>>> point_data

(continues on next page)

5.3. Manual 27

https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

(continued from previous page)

pept.PointData (samples: 3)

sample_size = 3
overlap = 0
points =
(rows: 10, columns: 4)
[[0. 1. 2. 3.]
[4. 5. 6. 7.]
...
[32. 33. 34. 35.]
[36. 37. 38. 39.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Access samples using subscript notation. Notice how the samples are consecutive, as overlap is 0 by default.

>>> point_data[0]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[0. 1. 2. 3.]
[4. 5. 6. 7.]
[8. 9. 10. 11.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[12. 13. 14. 15.]
[16. 17. 18. 19.]
[20. 21. 22. 23.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Now set an overlap of 2; notice how the number of samples changes:

>>> len(point_data) # Number of samples
3

>>> point_data.overlap = 2
>>> len(point_data)
8

Notice how rows are repeated from one sample to the next when accessing them, because overlap is now 2:

28 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

>>> point_data[0]
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.]])

>>> point_data[1]
array([[4., 5., 6., 7.],

[8., 9., 10., 11.],
[12., 13., 14., 15.]])

Now change sample_size to 5 and notice again how the number of samples changes:

>>> len(point_data)
8

>>> point_data.sample_size = 5
>>> len(point_data)
2

>>> point_data[0]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[0. 1. 2. 3.]
[4. 5. 6. 7.]
[8. 9. 10. 11.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

>>> point_data[1]
pept.PointData (samples: 1)

sample_size = 3
overlap = 0
points =
(rows: 3, columns: 4)
[[4. 5. 6. 7.]
[8. 9. 10. 11.]
[12. 13. 14. 15.]]

columns = ['t', 'x', 'y', 'z']
attrs = {}

Notice how the samples do not cover the whole input points_raw array, as the last lines are omitted - think of the
sample_size and overlap. They are still inside the inner points attribute of point_data though:

>>> point_data.points
array([[0., 1., 2., 3.],

[4., 5., 6., 7.],
[8., 9., 10., 11.],

(continues on next page)

5.3. Manual 29

pept Documentation, Release 0.4.1

(continued from previous page)

[12., 13., 14., 15.],
[16., 17., 18., 19.],
[20., 21., 22., 23.],
[24., 25., 26., 27.],
[28., 29., 30., 31.],
[32., 33., 34., 35.],
[36., 37., 38., 39.]])

Attributes
points [(N, M) numpy.ndarray] An (N, M >= 4) numpy array that stores the points as time,

followed by cartesian (3D) coordinates of the point, followed by any extra information. The
data columns are then [time, x, y, z, etc].

sample_size [int, list[int], pept.TimeWindow or None] Defining the number of points in
a sample; if it is an integer, a constant number of points are returned per sample. If it is a list
of integers, sample i will have length sample_size[i]. If it is a pept.TimeWindow instance,
each sample will span a fixed time window. If None, custom sample sizes are returned as per
the samples_indices attribute.

overlap [int, pept.TimeWindow or None] Defining the overlapping points between consecu-
tive samples. If int, constant numbers of points are used. If pept.TimeWindow, the overlap
will be a constant time window across the data timestamps (first column). If None, custom
sample sizes are defined as per the samples_indices attribute.

samples_indices [(S, 2) numpy.ndarray] A 2D NumPy array of integers, where row i de-
fines the i-th sample’s start and end row indices, i.e. sample[i] == data[samples_indices[i,
0]:samples_indices[i, 1]]. The sample_size and overlap are simply friendly interfaces to
setting the samples_indices.

columns [(M,) list[str]] A list of strings with the same number of columns as points contain-
ing each column’s name.

attrs [dict[str, Any]] A dictionary of other attributes saved on this class. Attribute names
starting with an underscore are considered “hidden”.

__init__(points, sample_size=None, overlap=None, columns=['t', 'x', 'y', 'z'], **kwargs)
PointData class constructor.

Parameters
points [(N, M) numpy.ndarray] An (N, M >= 4) numpy array that stores points (or any

generic 2D set of data). It expects that the first column is time, followed by cartesian (3D)
coordinates of points, followed by any extra information the user needs. The data columns
are then [time, x, y, z, etc].

sample_size [int, default 0] An int` that defines the number of points that should be re-
turned when iterating over points. A sample_size of 0 yields all the data as one single
sample.

overlap [int, default 0] An int that defines the overlap between two consecutive samples
that are returned when iterating over points. An overlap of 0 means consecutive samples,
while an overlap of (sample_size - 1) implies incrementing the samples by one. A negative
overlap means skipping values between samples. An error is raised if overlap is larger than
or equal to sample_size.

columns [List[str], default [“t”, “x”, “y”, “z”]] A list of strings corresponding to the
column labels in points.

30 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

**kwargs [extra keyword arguments] Any extra attributes to set on the class instance.

Raises
ValueError If line_data does not have (N, M) shape, where M >= 4.

Methods

__init__(points[, sample_size, overlap, columns]) PointData class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

plot([sample_indices, ax, alt_axes, . . .]) Plot points from selected samples using matplotlib.
save(filepath) Save a PEPTObject instance as a binary pickle object.
to_csv(filepath[, delimiter]) Write the inner points to a CSV file.

Attributes

attrs

columns

data

overlap

points

sample_size

samples_indices

property points

to_csv(filepath, delimiter=' ')
Write the inner points to a CSV file.

Write all points stored in the class to a CSV file.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

delimiter [str, default ” “] The delimiter used to separate the values in the CSV file.

plot(sample_indices=Ellipsis, ax=None, alt_axes=False, colorbar_col=- 1)
Plot points from selected samples using matplotlib.

5.3. Manual 31

https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Returns matplotlib figure and axes objects containing all points included in the samples selected by sam-
ple_indices. sample_indices may be a single sample index (e.g. 0), an iterable of indices (e.g. [1,5,6]), or
an Ellipsis (. . .) for all samples.

Parameters
sample_indices [int or iterable or Ellipsis, default Ellipsis] The index or indices

of the samples of points. An int signifies the sample index, an iterable (list-like) signifies
multiple sample indices, while an Ellipsis (. . .) signifies all samples. The default is . . . (all
points).

ax [mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes [bool, default False] If True, plot using the alternative PEPT-style axes con-
vention: z is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is
achieved by swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z,
x, y)).

colorbar_col [int, default -1] The column in the data samples that will be used to color
the points. The default is -1 (the last column).

Returns
fig, ax [matplotlib figure and axes objects]

Notes

Plotting all points is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use the faster pept.plots.PlotlyGrapher.

Examples

Plot the points from sample 1 in a PointData instance:

>>> point_data = pept.PointData(...)
>>> fig, ax = point_data.plot(1)
>>> fig.show()

Plot the points from samples 0, 1 and 2:

>>> fig, ax = point_data.plot([0, 1, 2])
>>> fig.show()

property attrs

property columns

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

property data

extra_attrs()

hidden_attrs()

32 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property overlap

property sample_size

property samples_indices

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 33

pept Documentation, Release 0.4.1

pept.Pixels

class pept.Pixels(pixels_array, xlim, ylim)
Bases: numpy.ndarray, pept.base.iterable_samples.PEPTObject

A class that manages a 2D pixel space, including tools for pixel traversal of lines, manipulation and visualisation.

This class can be instantiated in a couple of ways:

1. The constructor receives a pre-defined pixel space (i.e. a 2D numpy array), along with the space boundaries
xlim and ylim.

2. The from_lines method receives a sample of 2D lines (i.e. a 2D numpy array), each defined by two points,
creating a pixel space and traversing / pixellising the lines.

3. The empty method creates a pixel space filled with zeros.

This subclasses the numpy.ndarray class, so any Pixels object acts exactly like a 2D numpy array. All numpy
methods and operations are valid on Pixels (e.g. add 1 to all pixels with pixels += 1).

It is possible to add multiple samples of lines to the same pixel space using the add_lines method.

See also:

pept.LineData Encapsulate lines for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.utilities.read_csv Fast CSV file reading into numpy arrays.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

Notes

The traversed lines do not need to be fully bounded by the pixel space. Their intersection is automatically
computed.

The class saves pixels as a contiguous numpy array for efficient access in C / Cython functions. The inner data
can be mutated, but do not change the shape of the array after instantiating the class.

Examples

This class is most often instantiated from a sample of lines to pixellise:

>>> import pept
>>> import numpy as np

>>> lines = np.arange(70).reshape(10, 7)

>>> number_of_pixels = [3, 4]
>>> pixels = pept.Pixels.from_lines(lines, number_of_pixels)
>>> Initialised Pixels class in 0.0006861686706542969 s.

>>> print(pixels)
>>> pixels:
>>> [[[2. 1. 0. 0. 0.]
>>> [0. 2. 0. 0. 0.]

(continues on next page)

34 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

(continued from previous page)

>>> [0. 0. 0. 0. 0.]
>>> [0. 0. 0. 0. 0.]]

>>> [[0. 0. 0. 0. 0.]
>>> [0. 1. 1. 0. 0.]
>>> [0. 0. 1. 1. 0.]
>>> [0. 0. 0. 0. 0.]]

>>> [[0. 0. 0. 0. 0.]
>>> [0. 0. 0. 0. 0.]
>>> [0. 0. 0. 2. 0.]
>>> [0. 0. 0. 1. 2.]]]

>>> number_of_pixels = (3, 4, 5)
>>> pixel_size = [22. 16.5 13.2]

>>> xlim = [1. 67.]
>>> ylim = [2. 68.]
>>> zlim = [3. 69.]

>>> pixel_grids:
>>> [array([1., 23., 45., 67.]),
>>> array([2. , 18.5, 35. , 51.5, 68.]),
>>> array([3. , 16.2, 29.4, 42.6, 55.8, 69.])]

Note that it is important to define the number_of_pixels.

Attributes
pixels: (M, N) numpy.ndarray The 2D numpy array containing the number of lines that pass

through each pixel. They are stored as float`s. This class assumes a uniform grid of pixels
- that is, the pixel size in each dimension is constant, but can vary from one dimension to
another. The number of pixels in each dimension is defined by `number_of_pixels.

number_of_pixels: 2-tuple A 2-tuple corresponding to the shape of pixels.

pixel_size: (2,) numpy.ndarray The lengths of a pixel in the x- and y-dimensions, respectively.

xlim: (2,) numpy.ndarray The lower and upper boundaries of the pixellised volume in the x-
dimension, formatted as [x_min, x_max].

ylim: (2,) numpy.ndarray The lower and upper boundaries of the pixellised volume in the y-
dimension, formatted as [y_min, y_max].

pixel_grids: list[numpy.ndarray] A list containing the pixel gridlines in the x- and y-
dimensions. Each dimension’s gridlines are stored as a numpy of the pixel delimitations,
such that it has length (M + 1), where M is the number of pixels in a given dimension.

5.3. Manual 35

pept Documentation, Release 0.4.1

Methods

save(filepath) Save a Pixels instance as a binary pickle
object.

load(filepath) Load a saved / pickled Pixels object from
filepath.

from_lines(lines, number_of_pixels, xlim = None, ylim =
None, verbose = True)

Create a pixel space and traverse / pixel-
lise a given sample of lines.

empty(number_of_pixels, xlim, ylim, verbose = False) Create an empty pixel space for the 2D
rectangle bounded by xlim and ylim.

get_cutoff(p1, p2) Return a numpy array containing the min-
imum and maximum value found across
the two input arrays.

add_lines(lines, verbose = False) Pixellise a sample of lines, adding 1 to
each pixel traversed, for each line in the
sample.

cube_trace(index, color = None, opacity = 0.4, colorbar =
True, colorscale = “magma”)

Get the Plotly Mesh3d trace for a single
pixel at index.

cubes_traces(condition = lambda pixels: pixels > 0, color =
None, opacity = 0.4, colorbar = True, colorscale = “magma”)

Get a list of Plotly Mesh3d traces for all
pixel selected by the condition filtering
function.

pixels_trace(condition = lambda pixels: pixels > 0, size = 4,
color = None, opacity = 0.4, colorbar = True, colorscale =
“Magma”, colorbar_title = None)

Create and return a trace for all the pixels
in this class, with possible filtering.

heatmap_trace(ix = None, iy = None, iz = None, width = 0,
colorscale = “Magma”, transpose = True)

Create and return a Plotly Heatmap trace
of a 2D slice through the voxels.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

add_lines(lines[, verbose]) Pixellise a sample of lines, adding 1 to each pixel tra-
versed, for each line in the sample.

all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to

True.
argmax([axis, out]) Return indices of the maximum values along the

given axis.
argmin([axis, out]) Return indices of the minimum values along the

given axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a

set of choices.
continues on next page

36 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Table 7 – continued from previous page
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([order]) Return a copy of the array.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along

the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
empty(number_of_pixels, xlim, ylim) Create an empty pixel space for the 3D cube bounded

by xlim and ylim.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimen-

sion.
from_lines(lines, number_of_pixels[, xlim, . . .]) Create a pixel space and traverse / pixellise a given

sample of lines.
get_cutoff (p1, p2) Return a numpy array containing the minimum and

maximum value found across the two input arrays.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
heatmap_trace([colorscale, transpose, xgap, . . .]) Create and return a Plotly Heatmap trace of the pix-

els.
item(*args) Copy an element of an array to a standard Python

scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
load(filepath) Load a saved / pickled Pixels object from filepath.
max([axis, out, keepdims, initial, where]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims, initial, where]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a

different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way

that the value of the element in kth position is in the
position it would be in a sorted array.

pixels_trace([condition, opacity, colorscale]) Create and return a trace with all the pixels in this
class, with possible filtering.

plot([ax]) Plot pixels as a heatmap using Matplotlib.
prod([axis, dtype, out, keepdims, initial, . . .]) Return the product of the array elements over the

given axis
ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a

given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.

continues on next page

5.3. Manual 37

pept Documentation, Release 0.4.1

Table 7 – continued from previous page
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.
round([decimals, out]) Return a with each element rounded to the given

number of decimals.
save(filepath) Save a Pixels instance as a binary pickle object.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted

in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by

a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order]) Sort an array in-place.
squeeze([axis]) Remove axes of length one from a.
std([axis, dtype, out, ddof, keepdims, where]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims, initial, where]) Return the sum of the array elements over the given

axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes

in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as an a.ndim-levels deep nested list

of Python scalars.
tostring([order]) A compatibility alias for tobytes, with exactly the

same behavior.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims, where]) Returns the variance of the array elements, along

given axis.
view([dtype][, type]) New view of array with the same data.

Attributes

T The transposed array.
base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.
itemsize Length of one array element in bytes.

continues on next page

38 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Table 8 – continued from previous page
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
number_of_pixels

pixel_grids

pixel_size

pixels

real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when travers-

ing an array.
xlim

ylim

property pixels

property number_of_pixels

property xlim

property ylim

property pixel_size

property pixel_grids

static from_lines(lines, number_of_pixels, xlim=None, ylim=None, verbose=True)
Create a pixel space and traverse / pixellise a given sample of lines.

The number_of_pixels in each dimension must be defined. If the pixel space boundaries xlim or ylim are
not defined, they are inferred as the boundaries of the lines.

Parameters
lines [(M, N>=5) numpy.ndarray] The lines that will be pixellised, each defined by a times-

tamp and two 2D points, so that the data columns are [time, x1, y1, x2, y2]. Note that extra
columns are ignored.

number_of_pixels [(2,) list[int]] The number of pixels in the x- and y-dimensions, re-
spectively.

xlim [(2,) list[float], optional] The lower and upper boundaries of the pixellised volume
in the x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the
boundaries of lines.

ylim [(2,) list[float], optional] The lower and upper boundaries of the pixellised volume
in the y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the
boundaries of lines.

Returns
pept.Pixels A new Pixels object with the pixels through which the lines were traversed.

Raises

5.3. Manual 39

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pept Documentation, Release 0.4.1

ValueError If the input lines does not have the shape (M, N>=5). If the number_of_pixels
is not a 1D list with exactly 2 elements, or any dimension has fewer than 2 pixels.

static empty(number_of_pixels, xlim, ylim)
Create an empty pixel space for the 3D cube bounded by xlim and ylim.

Parameters
number_of_pixels: (2,) numpy.ndarray A list-like containing the number of pixels to be

created in the x- and y-dimension, respectively.

xlim: (2,) numpy.ndarray The lower and upper boundaries of the pixellised volume in the
x-dimension, formatted as [x_min, x_max].

ylim: (2,) numpy.ndarray The lower and upper boundaries of the pixellised volume in the
y-dimension, formatted as [y_min, y_max]. Time the pixellisation step and print it to the
terminal.

Raises
ValueError If number_of_pixels does not have exactly 2 values, or it has values smaller

than 2. If xlim or ylim do not have exactly 2 values each.

static get_cutoff(p1, p2)
Return a numpy array containing the minimum and maximum value found across the two input arrays.

Parameters
p1 [(N,) numpy.ndarray] The first 1D numpy array.

p2 [(N,) numpy.ndarray] The second 1D numpy array.

Returns
(2,) numpy.ndarray The minimum and maximum value found across p1 and p2.

Notes

The input parameters must be numpy arrays, otherwise an error will be raised.

save(filepath)
Save a Pixels instance as a binary pickle object.

Saves the full object state, including the inner .pixels NumPy array, xlim, etc. in a fast, portable binary
format. Load back the object using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a Pixels instance, then load it back:

>>> pixels = pept.Pixels.empty((640, 480), [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = pept.Pixels.load("pixels.pickle")

40 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

static load(filepath)
Load a saved / pickled Pixels object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.Pixels The loaded pept.Pixels instance.

Examples

Save a Pixels instance, then load it back:

>>> pixels = pept.Pixels.empty((640, 480), [0, 20], [0, 10])
>>> pixels.save("pixels.pickle")

>>> pixels_reloaded = pept.Pixels.load("pixels.pickle")

add_lines(lines, verbose=False)
Pixellise a sample of lines, adding 1 to each pixel traversed, for each line in the sample.

Parameters
lines [(M, N >= 5) numpy.ndarray] The sample of 2D lines to pixellise. Each line is defined

as a timestamp followed by two 2D points, such that the data columns are [time, x1, y1, x2,
y2, . . .]. Note that there can be extra data columns which will be ignored.

verbose [bool, default False] Time the pixel traversal and print it to the terminal.

Raises
ValueError If lines has fewer than 5 columns.

pixels_trace(condition=<function Pixels.<lambda>>, opacity=0.9, colorscale='Magma')
Create and return a trace with all the pixels in this class, with possible filtering.

Creates a plotly.graph_objects.Surface object for the centres of all pixels encapsulated in a pept.Pixels
instance, colour-coding the pixel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all pixels that have a value larger than 0.

Parameters
condition [function, default lambda pixels: pixels > 0] The filtering function applied to

the pixel data before plotting it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all pixels that should be plotted. The default,
lambda x: x > 0 selects all pixels which have a value larger than 0.

opacity [float, default 0.4] The opacity of the surface, where 0 is transparent and 1 is
fully opaque.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

5.3. Manual 41

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(pixels.pixels_trace())
>>> grapher.show()

heatmap_trace(colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0)
Create and return a Plotly Heatmap trace of the pixels.

Parameters
colorscale [str, default “Magma”] The Plotly scheme for color-coding the pixel values in

the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

transpose [bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

Examples

Pixellise an array of lines and add them to a PlotlyGrapher2D instance:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)

>>> grapher = pept.visualisation.PlotlyGrapher2D()
>>> grapher.add_pixels(pixels)
>>> grapher.show()

Or add them directly to a raw plotly.graph_objs figure:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

plot(ax=None)
Plot pixels as a heatmap using Matplotlib.

Returns matplotlib figure and axes objects containing the pixel values colour-coded in a Matplotlib image
(i.e. heatmap).

Parameters
ax [mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for

plotting. If undefined, new Matplotlib figure and axis objects are created.

Returns

42 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

fig, ax [matplotlib figure and axes objects]

Examples

Pixellise an array of lines and plot them with Matplotlib:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)

>>> fig, ax = pixels.plot()
>>> fig.show()

T
The transposed array.

Same as self.transpose().

See also:

transpose

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x
array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

all(axis=None, out=None, keepdims=False, *, where=True)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all equivalent function

any(axis=None, out=None, keepdims=False, *, where=True)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any equivalent function

5.3. Manual 43

https://numpy.org/devdocs/reference/generated/numpy.all.html#numpy.all
https://numpy.org/devdocs/reference/generated/numpy.any.html#numpy.any

pept Documentation, Release 0.4.1

argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax equivalent function

argmin(axis=None, out=None)
Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin equivalent function

argpartition(kth, axis=- 1, kind='introselect', order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition equivalent function

argsort(axis=- 1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

44 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.argmax.html#numpy.argmax
https://numpy.org/devdocs/reference/generated/numpy.argmin.html#numpy.argmin
https://numpy.org/devdocs/reference/generated/numpy.argpartition.html#numpy.argpartition
https://numpy.org/devdocs/reference/generated/numpy.argsort.html#numpy.argsort
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns
arr_t [ndarray] Unless copy is False and the other conditions for returning the input array

are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

byteswap(inplace=False)
Swap the bytes of the array elements

5.3. Manual 45

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex
number are swapped individually.

Parameters
inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns
out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.newbyteorder().byteswap() produces an array with the same values but different representa-
tion in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

choose(choices, out=None, mode='raise')
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

clip(min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

46 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.choose.html#numpy.choose

pept Documentation, Release 0.4.1

numpy.clip equivalent function

compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress equivalent function

conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

copy(order='C')
Return a copy of the array.

Parameters
order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout of the copy. ‘C’ means

C-order, ‘F’ means F-order, ‘A’ means ‘F’ if a is Fortran contiguous, ‘C’ otherwise. ‘K’
means match the layout of a as closely as possible. (Note that this function and numpy.
copy() are very similar but have different default values for their order= arguments, and
this function always passes sub-classes through.)

See also:

numpy.copy Similar function with different default behavior

numpy.copyto

Notes

This function is the preferred method for creating an array copy. The function numpy.copy() is similar,
but it defaults to using order ‘K’, and will not pass sub-classes through by default.

5.3. Manual 47

https://numpy.org/devdocs/reference/generated/numpy.clip.html#numpy.clip
https://numpy.org/devdocs/reference/generated/numpy.compress.html#numpy.compress
https://numpy.org/devdocs/reference/generated/numpy.conjugate.html#numpy.conjugate
https://numpy.org/devdocs/reference/generated/numpy.conjugate.html#numpy.conjugate
https://numpy.org/devdocs/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/devdocs/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/devdocs/reference/generated/numpy.copy.html#numpy.copy
https://numpy.org/devdocs/reference/generated/numpy.copyto.html#numpy.copyto
https://numpy.org/devdocs/reference/generated/numpy.copy.html#numpy.copy

pept Documentation, Release 0.4.1

Examples

>>> x = np.array([[1,2,3],[4,5,6]], order='F')

>>> y = x.copy()

>>> x.fill(0)

>>> x
array([[0, 0, 0],

[0, 0, 0]])

>>> y
array([[1, 2, 3],

[4, 5, 6]])

>>> y.flags['C_CONTIGUOUS']
True

ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c [Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

_ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that
is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to
avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the
same as self._array_interface_['data'][0].

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p((a
+ b).ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b).
ctypes.data_as(ctypes.c_void_p)

48 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object
https://numpy.org/devdocs/reference/routines.ctypeslib.html#module-numpy.ctypeslib

pept Documentation, Release 0.4.1

_ctypes.shape
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype('p') on this platform. This base-type could be ctypes.c_int, ctypes.c_long,
or ctypes.c_longlong depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying array.

_ctypes.strides
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape
attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

_ctypes.data_as(obj)
Return the data pointer cast to a particular c-types object. For example, calling self.
_as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the
data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.
c_double)).

The returned pointer will keep a reference to the array.

_ctypes.shape_as(obj)
Return the shape tuple as an array of some other c-types type. For example: self.
shape_as(ctypes.c_short).

_ctypes.strides_as(obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],

[2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

5.3. Manual 49

pept Documentation, Release 0.4.1

See also:

numpy.cumprod equivalent function

cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum equivalent function

data
Python buffer object pointing to the start of the array’s data.

diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also:

numpy.diagonal equivalent function

dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dtype
Data-type of the array’s elements.

Parameters
None

Returns
d [numpy dtype object]

50 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.cumprod.html#numpy.cumprod
https://numpy.org/devdocs/reference/generated/numpy.cumsum.html#numpy.cumsum
https://numpy.org/devdocs/reference/generated/numpy.diagonal.html#numpy.diagonal
https://numpy.org/devdocs/reference/generated/numpy.diagonal.html#numpy.diagonal
https://numpy.org/devdocs/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/devdocs/reference/index.html#module-numpy
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

See also:

numpy.dtype

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

fill(value)
Fill the array with a scalar value.

Parameters
value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flags
Information about the memory layout of the array.

5.3. Manual 51

https://numpy.org/devdocs/reference/generated/numpy.dtype.html#numpy.dtype
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/arrays.scalars.html#arrays-scalars

pept Documentation, Release 0.4.1

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed
by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• WRITEBACKIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] ==
self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data,
making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at
creation time, but a view of a writeable array may be subsequently locked while the base
array remains writeable. (The opposite is not true, in that a view of a locked array may
not be made writeable. However, currently, locking a base object does not lock any views
that already reference it, so under that circumstance it is possible to alter the contents of
a locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of
some other array. When this array is deallocated, the base array will be updated with the
contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

52 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See also:

flatten Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

flatten(order='C')
Return a copy of the array collapsed into one dimension.

Parameters
order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’

means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

5.3. Manual 53

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger

than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

item(*args)
Copy an element of an array to a standard Python scalar and return it.

54 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

Parameters
*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z [Standard Python scalar object] A copy of the specified element of the array as a suit-

able Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters
*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-

guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

5.3. Manual 55

https://docs.python.org/3/library/functions.html#type
https://numpy.org/devdocs/reference/arrays.scalars.html#arrays-scalars
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],

[1, 0, 6],
[1, 0, 9]])

itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean equivalent function

56 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.amax.html#numpy.amax
https://numpy.org/devdocs/reference/generated/numpy.mean.html#numpy.mean

pept Documentation, Release 0.4.1

min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin equivalent function

nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

newbyteorder(new_order='S', /)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order [str, optional] Byte order to force; a value from the byte order specifications

below. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘little’} - little endian

• {‘>’, ‘big’} - big endian

5.3. Manual 57

https://numpy.org/devdocs/reference/generated/numpy.amin.html#numpy.amin
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

• ‘=’ - native order, equivalent to sys.byteorder

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.

Returns
new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

partition(kth, axis=- 1, kind='introselect', order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth [int or sequence of ints] Element index to partition by. The kth element value will

be in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.

argpartition Indirect partition.

sort Full sort.

58 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.nonzero.html#numpy.nonzero
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.partition.html#numpy.partition

pept Documentation, Release 0.4.1

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod equivalent function

ptp(axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp equivalent function

put(indices, values, mode='raise')
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

real
The real part of the array.

See also:

5.3. Manual 59

https://numpy.org/devdocs/reference/generated/numpy.prod.html#numpy.prod
https://numpy.org/devdocs/reference/generated/numpy.ptp.html#numpy.ptp
https://numpy.org/devdocs/reference/generated/numpy.put.html#numpy.put
https://numpy.org/devdocs/reference/generated/numpy.ravel.html#numpy.ravel

pept Documentation, Release 0.4.1

numpy.real equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

reshape(shape, order='C')
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape pa-
rameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.
reshape((10, 11)).

resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError If a does not own its own data or references or views to it exist, and the data

memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

60 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.real.html#numpy.real
https://numpy.org/devdocs/reference/generated/numpy.repeat.html#numpy.repeat
https://numpy.org/devdocs/reference/generated/numpy.reshape.html#numpy.reshape
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#SystemError

pept Documentation, Release 0.4.1

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

5.3. Manual 61

pept Documentation, Release 0.4.1

See also:

numpy.around equivalent function

searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

62 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.around.html#numpy.around
https://numpy.org/devdocs/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pept Documentation, Release 0.4.1

setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

(continues on next page)

5.3. Manual 63

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

pept Documentation, Release 0.4.1

(continued from previous page)

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

shape
Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape
the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new
shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining
dimensions. Reshaping an array in-place will fail if a copy is required.

See also:

numpy.reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

size
Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

64 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.reshape.html#numpy.reshape

pept Documentation, Release 0.4.1

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

sort(axis=- 1, kind=None, order=None)
Sort an array in-place. Refer to numpy.sort for full documentation.

Parameters
axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last

axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

numpy.argsort Indirect sort.

numpy.lexsort Indirect stable sort on multiple keys.

numpy.searchsorted Find elements in sorted array.

numpy.partition Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

5.3. Manual 65

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.sort.html#numpy.sort
https://numpy.org/devdocs/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/devdocs/reference/generated/numpy.lexsort.html#numpy.lexsort
https://numpy.org/devdocs/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://numpy.org/devdocs/reference/generated/numpy.partition.html#numpy.partition

pept Documentation, Release 0.4.1

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

squeeze(axis=None)
Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std equivalent function

strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

66 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.squeeze.html#numpy.squeeze
https://numpy.org/devdocs/reference/generated/numpy.std.html#numpy.std
https://numpy.org/devdocs/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

pept Documentation, Release 0.4.1

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position along
a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5
values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum equivalent function

swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

5.3. Manual 67

https://numpy.org/devdocs/reference/generated/numpy.sum.html#numpy.sum

pept Documentation, Release 0.4.1

numpy.swapaxes equivalent function

take(indices, axis=None, out=None, mode='raise')
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

tobytes(order='C')
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters
order [{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means

C-order, ‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’
otherwise. Default is ‘C’.

Returns
s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

tofile(fid, sep='', format='%s')
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text
by first converting it to the closest Python type, and then using “format” % item.

68 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.swapaxes.html#numpy.swapaxes
https://numpy.org/devdocs/reference/generated/numpy.take.html#numpy.take
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at
the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

tolist()
Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns
y [object, or list of object, or list of list of object, or . . .] The possibly nested

list of array elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose preci-
sion.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars
to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]

(continues on next page)

5.3. Manual 69

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

(continued from previous page)

>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
...

TypeError: iteration over a 0-d array
>>> a.tolist()
1

tostring(order='C')
A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array
into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does
a[:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given,
their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape
= (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ...
i[1], i[0]).

Parameters
axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

transpose Equivalent function

ndarray.T Array property returning the array transposed.

70 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.trace.html#numpy.trace
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

ndarray.reshape Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var equivalent function

view([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float_').

Parameters
dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,

e.g., float32 or int16. Omitting it results in the view having the same data-type as a. This
argument can also be specified as an ndarray sub-class, which then specifies the type of the
returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again,
omission of the parameter results in type preservation.

5.3. Manual 71

https://numpy.org/devdocs/reference/generated/numpy.var.html#numpy.var
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#type

pept Documentation, Release 0.4.1

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a
different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndar-
ray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot
be predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly
how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or
transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

72 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the array must be C-
→˓contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

pept.Voxels

class pept.Voxels(voxels_array, xlim, ylim, zlim)
Bases: pept.base.iterable_samples.PEPTObject, numpy.ndarray

A class that manages a single 3D voxel space, including tools for voxel traversal of lines, manipulation and
visualisation.

This class can be instantiated in a couple of ways:

1. The constructor receives a pre-defined voxel space (i.e. a 3D numpy array), along with the space boundaries
xlim, ylim and zlim.

2. The from_lines method receives a sample of 3D lines (i.e. a 2D numpy array), each defined by two points,
creating a voxel space and traversing / voxellising the lines.

3. The empty method creates a voxel space filled with zeros.

This subclasses the numpy.ndarray class, so any Voxels object acts exactly like a 3D numpy array. All numpy
methods and operations are valid on Voxels (e.g. add 1 to all voxels with voxels += 1).

It is possible to add multiple samples of lines to the same voxel space using the add_lines method.

If you want to voxellise multiple samples of lines, see the pept.tracking.Voxelize class.

See also:

pept.VoxelData Asynchronously manage multiple voxel spaces.

pept.LineData Encapsulate lines for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

5.3. Manual 73

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Notes

The traversed lines do not need to be fully bounded by the voxel space. Their intersection is automatically
computed.

The class saves voxels as a contiguous numpy array for efficient access in C / Cython functions. The inner data
can be mutated, but do not change the shape of the array after instantiating the class.

Examples

This class is most often instantiated from a sample of lines to voxellise:

>>> import pept
>>> import numpy as np

>>> lines = np.arange(70).reshape(10, 7)

>>> number_of_voxels = [3, 4, 5]
>>> voxels = pept.Voxels.from_lines(lines, number_of_voxels)
>>> Initialised Voxels class in 0.0006861686706542969 s.

>>> print(voxels)
>>> voxels:
>>> [[[2. 1. 0. 0. 0.]
>>> [0. 2. 0. 0. 0.]
>>> [0. 0. 0. 0. 0.]
>>> [0. 0. 0. 0. 0.]]

>>> [[0. 0. 0. 0. 0.]
>>> [0. 1. 1. 0. 0.]
>>> [0. 0. 1. 1. 0.]
>>> [0. 0. 0. 0. 0.]]

>>> [[0. 0. 0. 0. 0.]
>>> [0. 0. 0. 0. 0.]
>>> [0. 0. 0. 2. 0.]
>>> [0. 0. 0. 1. 2.]]]

>>> number_of_voxels = (3, 4, 5)
>>> voxel_size = [22. 16.5 13.2]

>>> xlim = [1. 67.]
>>> ylim = [2. 68.]
>>> zlim = [3. 69.]

>>> voxel_grids:
>>> [array([1., 23., 45., 67.]),
>>> array([2. , 18.5, 35. , 51.5, 68.]),
>>> array([3. , 16.2, 29.4, 42.6, 55.8, 69.])]

Note that it is important to define the number_of_voxels.

74 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Attributes
voxels: (M, N, P) numpy.ndarray The 3D numpy array containing the number of lines that pass

through each voxel. They are stored as float`s. This class assumes a uniform grid of voxels
- that is, the voxel size in each dimension is constant, but can vary from one dimension to
another. The number of voxels in each dimension is defined by `number_of_voxels.

number_of_voxels: 3-tuple A 3-tuple corresponding to the shape of voxels.

voxel_size: (3,) numpy.ndarray The lengths of a voxel in the x-, y- and z-dimensions, respec-
tively.

xlim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the x-
dimension, formatted as [x_min, x_max].

ylim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the y-
dimension, formatted as [y_min, y_max].

zlim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the z-
dimension, formatted as [z_min, z_max].

voxel_grids: list[numpy.ndarray] A list containing the voxel gridlines in the x-, y-, and z-
dimensions. Each dimension’s gridlines are stored as a numpy of the voxel delimitations,
such that it has length (M + 1), where M is the number of voxels in given dimension.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

add_lines(lines[, verbose]) Voxellise a sample of lines, adding 1 to each voxel
traversed, for each line in the sample.

all([axis, out, keepdims, where]) Returns True if all elements evaluate to True.
any([axis, out, keepdims, where]) Returns True if any of the elements of a evaluate to

True.
argmax([axis, out]) Return indices of the maximum values along the

given axis.
argmin([axis, out]) Return indices of the minimum values along the

given axis.
argpartition(kth[, axis, kind, order]) Returns the indices that would partition this array.
argsort([axis, kind, order]) Returns the indices that would sort this array.
astype(dtype[, order, casting, subok, copy]) Copy of the array, cast to a specified type.
byteswap([inplace]) Swap the bytes of the array elements
choose(choices[, out, mode]) Use an index array to construct a new array from a

set of choices.
clip([min, max, out]) Return an array whose values are limited to [min,

max].
compress(condition[, axis, out]) Return selected slices of this array along given axis.
conj() Complex-conjugate all elements.
conjugate() Return the complex conjugate, element-wise.
copy([deep]) Create a deep copy of an instance of this class, in-

cluding all inner attributes.
continues on next page

5.3. Manual 75

pept Documentation, Release 0.4.1

Table 9 – continued from previous page
cube_trace(index[, color, opacity, . . .]) Get the Plotly Mesh3d trace for a single voxel at in-

dex.
cubes_traces([condition, color, opacity, . . .]) Get a list of Plotly Mesh3d traces for all voxels se-

lected by the condition filtering function.
cumprod([axis, dtype, out]) Return the cumulative product of the elements along

the given axis.
cumsum([axis, dtype, out]) Return the cumulative sum of the elements along the

given axis.
diagonal([offset, axis1, axis2]) Return specified diagonals.
dot(b[, out]) Dot product of two arrays.
dump(file) Dump a pickle of the array to the specified file.
dumps() Returns the pickle of the array as a string.
empty(number_of_voxels, xlim, ylim, zlim) Create an empty voxel space for the 3D cube bounded

by xlim, ylim and zlim.
fill(value) Fill the array with a scalar value.
flatten([order]) Return a copy of the array collapsed into one dimen-

sion.
from_lines(lines, number_of_voxels[, xlim, . . .]) Create a voxel space and traverse / voxellise a given

sample of lines.
get_cutoff (p1, p2) Return a numpy array containing the minimum and

maximum value found across the two input arrays.
getfield(dtype[, offset]) Returns a field of the given array as a certain type.
heatmap_trace([ix, iy, iz, width, . . .]) Create and return a Plotly Heatmap trace of a 2D slice

through the voxels.
item(*args) Copy an element of an array to a standard Python

scalar and return it.
itemset(*args) Insert scalar into an array (scalar is cast to array’s

dtype, if possible)
load(filepath) Load a saved / pickled Voxels object from filepath.
max([axis, out, keepdims, initial, where]) Return the maximum along a given axis.
mean([axis, dtype, out, keepdims, where]) Returns the average of the array elements along given

axis.
min([axis, out, keepdims, initial, where]) Return the minimum along a given axis.
newbyteorder([new_order]) Return the array with the same data viewed with a

different byte order.
nonzero() Return the indices of the elements that are non-zero.
partition(kth[, axis, kind, order]) Rearranges the elements in the array in such a way

that the value of the element in kth position is in the
position it would be in a sorted array.

plot([condition, ax, alt_axes]) Plot the voxels in this class using Matplotlib.
prod([axis, dtype, out, keepdims, initial, . . .]) Return the product of the array elements over the

given axis
ptp([axis, out, keepdims]) Peak to peak (maximum - minimum) value along a

given axis.
put(indices, values[, mode]) Set a.flat[n] = values[n] for all n in indices.
ravel([order]) Return a flattened array.
repeat(repeats[, axis]) Repeat elements of an array.
reshape(shape[, order]) Returns an array containing the same data with a new

shape.
resize(new_shape[, refcheck]) Change shape and size of array in-place.

continues on next page

76 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Table 9 – continued from previous page
round([decimals, out]) Return a with each element rounded to the given

number of decimals.
save(filepath) Save a Voxels instance as a binary pickle object.
searchsorted(v[, side, sorter]) Find indices where elements of v should be inserted

in a to maintain order.
setfield(val, dtype[, offset]) Put a value into a specified place in a field defined by

a data-type.
setflags([write, align, uic]) Set array flags WRITEABLE, ALIGNED, (WRITE-

BACKIFCOPY and UPDATEIFCOPY), respec-
tively.

sort([axis, kind, order]) Sort an array in-place.
squeeze([axis]) Remove axes of length one from a.
std([axis, dtype, out, ddof, keepdims, where]) Returns the standard deviation of the array elements

along given axis.
sum([axis, dtype, out, keepdims, initial, where]) Return the sum of the array elements over the given

axis.
swapaxes(axis1, axis2) Return a view of the array with axis1 and axis2 inter-

changed.
take(indices[, axis, out, mode]) Return an array formed from the elements of a at the

given indices.
tobytes([order]) Construct Python bytes containing the raw data bytes

in the array.
tofile(fid[, sep, format]) Write array to a file as text or binary (default).
tolist() Return the array as an a.ndim-levels deep nested list

of Python scalars.
tostring([order]) A compatibility alias for tobytes, with exactly the

same behavior.
trace([offset, axis1, axis2, dtype, out]) Return the sum along diagonals of the array.
transpose(*axes) Returns a view of the array with axes transposed.
var([axis, dtype, out, ddof, keepdims, where]) Returns the variance of the array elements, along

given axis.
view([dtype][, type]) New view of array with the same data.
voxels_trace([condition, size, color, . . .]) Create and return a trace for all the voxels in this class,

with possible filtering.

Attributes

T The transposed array.
attrs

base Base object if memory is from some other object.
ctypes An object to simplify the interaction of the array with

the ctypes module.
data Python buffer object pointing to the start of the ar-

ray’s data.
dtype Data-type of the array’s elements.
flags Information about the memory layout of the array.
flat A 1-D iterator over the array.
imag The imaginary part of the array.

continues on next page

5.3. Manual 77

pept Documentation, Release 0.4.1

Table 10 – continued from previous page
itemsize Length of one array element in bytes.
nbytes Total bytes consumed by the elements of the array.
ndim Number of array dimensions.
number_of_voxels

real The real part of the array.
shape Tuple of array dimensions.
size Number of elements in the array.
strides Tuple of bytes to step in each dimension when travers-

ing an array.
voxel_grids

voxel_size

voxels

xlim

ylim

zlim

property voxels

property number_of_voxels

property xlim

property ylim

property zlim

property voxel_size

property voxel_grids

property attrs

static from_lines(lines, number_of_voxels, xlim=None, ylim=None, zlim=None, verbose=True)
Create a voxel space and traverse / voxellise a given sample of lines.

The number_of_voxels in each dimension must be defined. If the voxel space boundaries xlim, ylim or zlim
are not defined, they are inferred as the boundaries of the lines.

Parameters
lines [(M, N>=7) numpy.ndarray or pept.LineData] The lines that will be voxellised,

each defined by a timestamp and two 3D points, so that the data columns are [time, x1, y1,
z1, x2, y2, z2, . . .]. Note that extra columns are ignored.

number_of_voxels [(3,) list[int]] The number of voxels in the x-, y-, and z-dimensions,
respectively.

xlim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the
boundaries of lines.

78 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float

pept Documentation, Release 0.4.1

ylim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the
boundaries of lines.

zlim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume
in the z-dimension, formatted as [z_min, z_max]. If undefined, it is inferred from the
boundaries of lines.

Returns
pept.Voxels A new Voxels object with the voxels through which the lines were traversed.

Raises
ValueError If the input lines does not have the shape (M, N>=7). If the number_of_voxels

is not a 1D list with exactly 3 elements, or any dimension has fewer than 2 voxels.

static empty(number_of_voxels, xlim, ylim, zlim)
Create an empty voxel space for the 3D cube bounded by xlim, ylim and zlim.

Parameters
number_of_voxels: (3,) numpy.ndarray A list-like containing the number of voxels to be

created in the x-, y- and z-dimension, respectively.

xlim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the
x-dimension, formatted as [x_min, x_max].

ylim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the
y-dimension, formatted as [y_min, y_max].

zlim: (2,) numpy.ndarray The lower and upper boundaries of the voxellised volume in the
z-dimension, formatted as [z_min, z_max].

Raises
ValueError If number_of_voxels does not have exactly 3 values, or it has values smaller

than 2. If xlim, ylim or zlim do not have exactly 2 values each.

static get_cutoff(p1, p2)
Return a numpy array containing the minimum and maximum value found across the two input arrays.

Parameters
p1 [(N,) numpy.ndarray] The first 1D numpy array.

p2 [(N,) numpy.ndarray] The second 1D numpy array.

Returns
(2,) numpy.ndarray The minimum and maximum value found across p1 and p2.

Notes

The input parameters must be numpy arrays, otherwise an error will be raised.

save(filepath)
Save a Voxels instance as a binary pickle object.

Saves the full object state, including the inner .voxels NumPy array, xlim, etc. in a fast, portable binary
format. Load back the object using the load method.

Parameters

5.3. Manual 79

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a Voxels instance, then load it back:

>>> voxels = pept.Voxels.empty((64, 48, 32), [0, 20], [0, 10], [0, 5])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = pept.Voxels.load("voxels.pickle")

static load(filepath)
Load a saved / pickled Voxels object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.Voxels The loaded pept.Voxels instance.

Examples

Save a Voxels instance, then load it back:

>>> voxels = pept.Voxels.empty((64, 48, 32), [0, 20], [0, 10], [0, 5])
>>> voxels.save("voxels.pickle")

>>> voxels_reloaded = pept.Voxels.load("voxels.pickle")

add_lines(lines, verbose=False)
Voxellise a sample of lines, adding 1 to each voxel traversed, for each line in the sample.

Parameters
lines [(M, N >= 7) numpy.ndarray] The sample of 3D lines to voxellise. Each line is defined

as a timestamp followed by two 3D points, such that the data columns are [time, x1, y1, z1,
x2, y2, z2, . . .]. Note that there can be extra data columns which will be ignored.

verbose [bool, default False] Time the voxel traversal and print it to the terminal.

Raises
ValueError If lines has fewer than 7 columns.

plot(condition=<function Voxels.<lambda>>, ax=None, alt_axes=False)
Plot the voxels in this class using Matplotlib.

This plots the centres of all voxels encapsulated in a pept.Voxels instance, colour-coding the voxel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters

80 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

condition [function, default lambda voxel_data: voxel_data > 0] The filtering function
applied to the voxel data before plotting it. It should return a boolean mask (a numpy array
of the same shape, filled with True and False), selecting all voxels that should be plotted.
The default, lambda x: x > 0 selects all voxels which have a value larger than 0.

ax [mpl_toolkits.mplot3D.Axes3D object, optional] The 3D matplotlib-based axis for
plotting. If undefined, new Matplotlib figure and axis objects are created.

alt_axes [bool, default False] If True, plot using the alternative PEPT-style axes con-
vention: z is horizontal, y points upwards. Because Matplotlib cannot swap axes, this is
achieved by swapping the parameters in the plotting call (i.e. plt.plot(x, y, z) -> plt.plot(z,
x, y)).

Returns
fig, ax [matplotlib figure and axes objects]

Notes

Plotting all points is very computationally-expensive for matplotlib. It is recommended to only plot a couple
of samples at a time, or use the faster pept.plots.PlotlyGrapher.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)

>>> fig, ax = voxels.plot()
>>> fig.show()

cube_trace(index, color=None, opacity=0.4, colorbar=True, colorscale='magma')
Get the Plotly Mesh3d trace for a single voxel at index.

This renders the voxel as a cube. While visually accurate, this method is very computationally intensive -
only use it for fewer than 100 cubes. For more voxels, use the voxels_trace method.

Parameters
index: (3,) tuple The voxel indices, given as a 3-tuple.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the voxel values. Is overridden
if color is set.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

5.3. Manual 81

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Raises
ValueError If index does not contain exactly three values.

Notes

If you want to render a small number of voxels as cubes using Plotly, use the cubes_traces method, which
creates a list of individual cubes for all voxels, using this function.

cubes_traces(condition=<function Voxels.<lambda>>, color=None, opacity=0.4, colorbar=True,
colorscale='magma')

Get a list of Plotly Mesh3d traces for all voxels selected by the condition filtering function.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

This renders each voxel as individual cubes. While visually accurate, this method is very computationally
intensive - only use it for fewer than 100 cubes. For more voxels, use the voxels_trace method.

Parameters
condition [function, default lambda voxels: voxels > 0] The filtering function applied

to the voxel data before plotting it. It should return a boolean mask (a numpy array of the
same shape, filled with True and False), selecting all voxels that should be plotted. The
default, lambda x: x > 0 selects all voxels which have a value larger than 0.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the voxel values. Is overridden
if color is set.

colorscale [str, default “magma”] The Plotly scheme for color-coding the voxel values in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)

>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)

>>> grapher.add_lines(lines)
>>> grapher.add_traces(voxels.cubes_traces()) # small number of voxels
>>> grapher.show()

82 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

voxels_trace(condition=<function Voxels.<lambda>>, size=4, color=None, opacity=0.4, colorbar=True,
colorscale='Magma', colorbar_title=None)

Create and return a trace for all the voxels in this class, with possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of all voxels encapsulated in a pept.Voxels
instance, colour-coding the voxel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters
condition [function, default lambda voxel_data: voxel_data > 0] The filtering function

applied to the voxel data before plotting it. It should return a boolean mask (a numpy array
of the same shape, filled with True and False), selecting all voxels that should be plotted.
The default, lambda x: x > 0 selects all voxels which have a value larger than 0.

size [float, default 4] The size of the plotted voxel points. Note that due to the large
number of voxels in typical applications, the voxel centres are plotted as square points,
which provides an easy to understand image that is also fast and responsive.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the voxel values. Is overridden
if color is set.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels.from_lines(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(voxels.voxels_trace())
>>> grapher.show()

heatmap_trace(ix=None, iy=None, iz=None, width=0, colorscale='Magma', transpose=True)
Create and return a Plotly Heatmap trace of a 2D slice through the voxels.

The orientation of the slice is defined by the input ix (for the YZ plane), iy (XZ), iz (XY) parameters -
which correspond to the voxel index in the x-, y-, and z-dimension. Importantly, at least one of them must
be defined.

Parameters

5.3. Manual 83

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

ix [int, optional] The index along the x-axis of the voxels at which a YZ slice is to be taken.
One of ix, iy or iz must be defined.

iy: int, optional The index along the y-axis of the voxels at which a XZ slice is to be taken.
One of ix, iy or iz must be defined.

iz [int, optional] The index along the z-axis of the voxels at which a XY slice is to be taken.
One of ix, iy or iz must be defined.

width [int, default 0] The number of voxel layers around the given slice index to collapse
(i.e. accumulate) onto the heatmap.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

transpose [bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

Raises
ValueError If neither of ix, iy or iz was defined.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(voxels.heatmap_trace())
>>> fig.show()

T
The transposed array.

Same as self.transpose().

See also:

transpose

Examples

>>> x = np.array([[1.,2.],[3.,4.]])
>>> x
array([[1., 2.],

[3., 4.]])
>>> x.T
array([[1., 3.],

[2., 4.]])
>>> x = np.array([1.,2.,3.,4.])
>>> x

(continues on next page)

84 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

(continued from previous page)

array([1., 2., 3., 4.])
>>> x.T
array([1., 2., 3., 4.])

all(axis=None, out=None, keepdims=False, *, where=True)
Returns True if all elements evaluate to True.

Refer to numpy.all for full documentation.

See also:

numpy.all equivalent function

any(axis=None, out=None, keepdims=False, *, where=True)
Returns True if any of the elements of a evaluate to True.

Refer to numpy.any for full documentation.

See also:

numpy.any equivalent function

argmax(axis=None, out=None)
Return indices of the maximum values along the given axis.

Refer to numpy.argmax for full documentation.

See also:

numpy.argmax equivalent function

argmin(axis=None, out=None)
Return indices of the minimum values along the given axis.

Refer to numpy.argmin for detailed documentation.

See also:

numpy.argmin equivalent function

argpartition(kth, axis=- 1, kind='introselect', order=None)
Returns the indices that would partition this array.

Refer to numpy.argpartition for full documentation.

New in version 1.8.0.

See also:

numpy.argpartition equivalent function

argsort(axis=- 1, kind=None, order=None)
Returns the indices that would sort this array.

Refer to numpy.argsort for full documentation.

See also:

numpy.argsort equivalent function

5.3. Manual 85

https://numpy.org/devdocs/reference/generated/numpy.all.html#numpy.all
https://numpy.org/devdocs/reference/generated/numpy.any.html#numpy.any
https://numpy.org/devdocs/reference/generated/numpy.argmax.html#numpy.argmax
https://numpy.org/devdocs/reference/generated/numpy.argmin.html#numpy.argmin
https://numpy.org/devdocs/reference/generated/numpy.argpartition.html#numpy.argpartition
https://numpy.org/devdocs/reference/generated/numpy.argsort.html#numpy.argsort

pept Documentation, Release 0.4.1

astype(dtype, order='K', casting='unsafe', subok=True, copy=True)
Copy of the array, cast to a specified type.

Parameters
dtype [str or dtype] Typecode or data-type to which the array is cast.

order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] Controls the memory layout order of the result. ‘C’
means C order, ‘F’ means Fortran order, ‘A’ means ‘F’ order if all the arrays are Fortran
contiguous, ‘C’ order otherwise, and ‘K’ means as close to the order the array elements
appear in memory as possible. Default is ‘K’.

casting [{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional] Controls what kind of data
casting may occur. Defaults to ‘unsafe’ for backwards compatibility.

• ‘no’ means the data types should not be cast at all.

• ‘equiv’ means only byte-order changes are allowed.

• ‘safe’ means only casts which can preserve values are allowed.

• ‘same_kind’ means only safe casts or casts within a kind, like float64 to float32, are
allowed.

• ‘unsafe’ means any data conversions may be done.

subok [bool, optional] If True, then sub-classes will be passed-through (default), otherwise
the returned array will be forced to be a base-class array.

copy [bool, optional] By default, astype always returns a newly allocated array. If this is
set to false, and the dtype, order, and subok requirements are satisfied, the input array is
returned instead of a copy.

Returns
arr_t [ndarray] Unless copy is False and the other conditions for returning the input array

are satisfied (see description for copy input parameter), arr_t is a new array of the same
shape as the input array, with dtype, order given by dtype, order.

Raises
ComplexWarning When casting from complex to float or int. To avoid this, one should use
a.real.astype(t).

Notes

Changed in version 1.17.0: Casting between a simple data type and a structured one is possible only for
“unsafe” casting. Casting to multiple fields is allowed, but casting from multiple fields is not.

Changed in version 1.9.0: Casting from numeric to string types in ‘safe’ casting mode requires that the
string dtype length is long enough to store the max integer/float value converted.

86 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Examples

>>> x = np.array([1, 2, 2.5])
>>> x
array([1. , 2. , 2.5])

>>> x.astype(int)
array([1, 2, 2])

base
Base object if memory is from some other object.

Examples

The base of an array that owns its memory is None:

>>> x = np.array([1,2,3,4])
>>> x.base is None
True

Slicing creates a view, whose memory is shared with x:

>>> y = x[2:]
>>> y.base is x
True

byteswap(inplace=False)
Swap the bytes of the array elements

Toggle between low-endian and big-endian data representation by returning a byteswapped array, optionally
swapped in-place. Arrays of byte-strings are not swapped. The real and imaginary parts of a complex
number are swapped individually.

Parameters
inplace [bool, optional] If True, swap bytes in-place, default is False.

Returns
out [ndarray] The byteswapped array. If inplace is True, this is a view to self.

Examples

>>> A = np.array([1, 256, 8755], dtype=np.int16)
>>> list(map(hex, A))
['0x1', '0x100', '0x2233']
>>> A.byteswap(inplace=True)
array([256, 1, 13090], dtype=int16)
>>> list(map(hex, A))
['0x100', '0x1', '0x3322']

Arrays of byte-strings are not swapped

5.3. Manual 87

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

>>> A = np.array([b'ceg', b'fac'])
>>> A.byteswap()
array([b'ceg', b'fac'], dtype='|S3')

A.newbyteorder().byteswap() produces an array with the same values but different representa-
tion in memory

>>> A = np.array([1, 2, 3])
>>> A.view(np.uint8)
array([1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0,

0, 0], dtype=uint8)
>>> A.newbyteorder().byteswap(inplace=True)
array([1, 2, 3])
>>> A.view(np.uint8)
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0,

0, 3], dtype=uint8)

choose(choices, out=None, mode='raise')
Use an index array to construct a new array from a set of choices.

Refer to numpy.choose for full documentation.

See also:

numpy.choose equivalent function

clip(min=None, max=None, out=None, **kwargs)
Return an array whose values are limited to [min, max]. One of max or min must be given.

Refer to numpy.clip for full documentation.

See also:

numpy.clip equivalent function

compress(condition, axis=None, out=None)
Return selected slices of this array along given axis.

Refer to numpy.compress for full documentation.

See also:

numpy.compress equivalent function

conj()
Complex-conjugate all elements.

Refer to numpy.conjugate for full documentation.

See also:

numpy.conjugate equivalent function

conjugate()
Return the complex conjugate, element-wise.

Refer to numpy.conjugate for full documentation.

88 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.choose.html#numpy.choose
https://numpy.org/devdocs/reference/generated/numpy.clip.html#numpy.clip
https://numpy.org/devdocs/reference/generated/numpy.compress.html#numpy.compress
https://numpy.org/devdocs/reference/generated/numpy.conjugate.html#numpy.conjugate

pept Documentation, Release 0.4.1

See also:

numpy.conjugate equivalent function

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

ctypes
An object to simplify the interaction of the array with the ctypes module.

This attribute creates an object that makes it easier to use arrays when calling shared libraries with the ctypes
module. The returned object has, among others, data, shape, and strides attributes (see Notes below) which
themselves return ctypes objects that can be used as arguments to a shared library.

Parameters
None

Returns
c [Python object] Possessing attributes data, shape, strides, etc.

See also:

numpy.ctypeslib

Notes

Below are the public attributes of this object which were documented in “Guide to NumPy” (we have
omitted undocumented public attributes, as well as documented private attributes):

_ctypes.data
A pointer to the memory area of the array as a Python integer. This memory area may contain data that
is not aligned, or not in correct byte-order. The memory area may not even be writeable. The array
flags and data-type of this array should be respected when passing this attribute to arbitrary C-code to
avoid trouble that can include Python crashing. User Beware! The value of this attribute is exactly the
same as self._array_interface_['data'][0].

Note that unlike data_as, a reference will not be kept to the array: code like ctypes.c_void_p((a
+ b).ctypes.data) will result in a pointer to a deallocated array, and should be spelt (a + b).
ctypes.data_as(ctypes.c_void_p)

_ctypes.shape
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the C-integer corre-
sponding to dtype('p') on this platform. This base-type could be ctypes.c_int, ctypes.c_long,
or ctypes.c_longlong depending on the platform. The c_intp type is defined accordingly in
numpy.ctypeslib. The ctypes array contains the shape of the underlying array.

_ctypes.strides
(c_intp*self.ndim): A ctypes array of length self.ndim where the basetype is the same as for the shape
attribute. This ctypes array contains the strides information from the underlying array. This strides
information is important for showing how many bytes must be jumped to get to the next element in the
array.

_ctypes.data_as(obj)
Return the data pointer cast to a particular c-types object. For example, calling self.
_as_parameter_ is equivalent to self.data_as(ctypes.c_void_p). Perhaps you want to use the
data as a pointer to a ctypes array of floating-point data: self.data_as(ctypes.POINTER(ctypes.
c_double)).

5.3. Manual 89

https://numpy.org/devdocs/reference/generated/numpy.conjugate.html#numpy.conjugate
https://docs.python.org/3/library/functions.html#object
https://numpy.org/devdocs/reference/routines.ctypeslib.html#module-numpy.ctypeslib

pept Documentation, Release 0.4.1

The returned pointer will keep a reference to the array.

_ctypes.shape_as(obj)
Return the shape tuple as an array of some other c-types type. For example: self.
shape_as(ctypes.c_short).

_ctypes.strides_as(obj)
Return the strides tuple as an array of some other c-types type. For example: self.
strides_as(ctypes.c_longlong).

If the ctypes module is not available, then the ctypes attribute of array objects still returns something useful,
but ctypes objects are not returned and errors may be raised instead. In particular, the object will still have
the as_parameter attribute which will return an integer equal to the data attribute.

Examples

>>> import ctypes
>>> x = np.array([[0, 1], [2, 3]], dtype=np.int32)
>>> x
array([[0, 1],

[2, 3]], dtype=int32)
>>> x.ctypes.data
31962608 # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32))
<__main__.LP_c_uint object at 0x7ff2fc1fc200> # may vary
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint32)).contents
c_uint(0)
>>> x.ctypes.data_as(ctypes.POINTER(ctypes.c_uint64)).contents
c_ulong(4294967296)
>>> x.ctypes.shape
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1fce60> # may vary
>>> x.ctypes.strides
<numpy.core._internal.c_long_Array_2 object at 0x7ff2fc1ff320> # may vary

cumprod(axis=None, dtype=None, out=None)
Return the cumulative product of the elements along the given axis.

Refer to numpy.cumprod for full documentation.

See also:

numpy.cumprod equivalent function

cumsum(axis=None, dtype=None, out=None)
Return the cumulative sum of the elements along the given axis.

Refer to numpy.cumsum for full documentation.

See also:

numpy.cumsum equivalent function

data
Python buffer object pointing to the start of the array’s data.

90 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.cumprod.html#numpy.cumprod
https://numpy.org/devdocs/reference/generated/numpy.cumsum.html#numpy.cumsum

pept Documentation, Release 0.4.1

diagonal(offset=0, axis1=0, axis2=1)
Return specified diagonals. In NumPy 1.9 the returned array is a read-only view instead of a copy as in
previous NumPy versions. In a future version the read-only restriction will be removed.

Refer to numpy.diagonal() for full documentation.

See also:

numpy.diagonal equivalent function

dot(b, out=None)
Dot product of two arrays.

Refer to numpy.dot for full documentation.

See also:

numpy.dot equivalent function

Examples

>>> a = np.eye(2)
>>> b = np.ones((2, 2)) * 2
>>> a.dot(b)
array([[2., 2.],

[2., 2.]])

This array method can be conveniently chained:

>>> a.dot(b).dot(b)
array([[8., 8.],

[8., 8.]])

dtype
Data-type of the array’s elements.

Parameters
None

Returns
d [numpy dtype object]

See also:

numpy.dtype

5.3. Manual 91

https://numpy.org/devdocs/reference/generated/numpy.diagonal.html#numpy.diagonal
https://numpy.org/devdocs/reference/generated/numpy.diagonal.html#numpy.diagonal
https://numpy.org/devdocs/reference/generated/numpy.dot.html#numpy.dot
https://numpy.org/devdocs/reference/index.html#module-numpy
https://docs.python.org/3/library/functions.html#object
https://numpy.org/devdocs/reference/generated/numpy.dtype.html#numpy.dtype

pept Documentation, Release 0.4.1

Examples

>>> x
array([[0, 1],

[2, 3]])
>>> x.dtype
dtype('int32')
>>> type(x.dtype)
<type 'numpy.dtype'>

dump(file)
Dump a pickle of the array to the specified file. The array can be read back with pickle.load or numpy.load.

Parameters
file [str or Path] A string naming the dump file.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

dumps()
Returns the pickle of the array as a string. pickle.loads or numpy.loads will convert the string back to an
array.

Parameters
None

fill(value)
Fill the array with a scalar value.

Parameters
value [scalar] All elements of a will be assigned this value.

Examples

>>> a = np.array([1, 2])
>>> a.fill(0)
>>> a
array([0, 0])
>>> a = np.empty(2)
>>> a.fill(1)
>>> a
array([1., 1.])

flags
Information about the memory layout of the array.

92 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/arrays.scalars.html#arrays-scalars

pept Documentation, Release 0.4.1

Notes

The flags object can be accessed dictionary-like (as in a.flags['WRITEABLE']), or by using lowercased
attribute names (as in a.flags.writeable). Short flag names are only supported in dictionary access.

Only the WRITEBACKIFCOPY, UPDATEIFCOPY, WRITEABLE, and ALIGNED flags can be changed
by the user, via direct assignment to the attribute or dictionary entry, or by calling ndarray.setflags.

The array flags cannot be set arbitrarily:

• UPDATEIFCOPY can only be set False.

• WRITEBACKIFCOPY can only be set False.

• ALIGNED can only be set True if the data is truly aligned.

• WRITEABLE can only be set True if the array owns its own memory or the ultimate owner of the
memory exposes a writeable buffer interface or is a string.

Arrays can be both C-style and Fortran-style contiguous simultaneously. This is clear for 1-dimensional
arrays, but can also be true for higher dimensional arrays.

Even for contiguous arrays a stride for a given dimension arr.strides[dim] may be arbitrary if arr.
shape[dim] == 1 or the array has no elements. It does not generally hold that self.strides[-1] ==
self.itemsize for C-style contiguous arrays or self.strides[0] == self.itemsize for Fortran-
style contiguous arrays is true.

Attributes
C_CONTIGUOUS (C) The data is in a single, C-style contiguous segment.

F_CONTIGUOUS (F) The data is in a single, Fortran-style contiguous segment.

OWNDATA (O) The array owns the memory it uses or borrows it from another object.

WRITEABLE (W) The data area can be written to. Setting this to False locks the data,
making it read-only. A view (slice, etc.) inherits WRITEABLE from its base array at
creation time, but a view of a writeable array may be subsequently locked while the base
array remains writeable. (The opposite is not true, in that a view of a locked array may
not be made writeable. However, currently, locking a base object does not lock any views
that already reference it, so under that circumstance it is possible to alter the contents of
a locked array via a previously created writeable view onto it.) Attempting to change a
non-writeable array raises a RuntimeError exception.

ALIGNED (A) The data and all elements are aligned appropriately for the hardware.

WRITEBACKIFCOPY (X) This array is a copy of some other array. The C-API function
PyArray_ResolveWritebackIfCopy must be called before deallocating to the base array will
be updated with the contents of this array.

UPDATEIFCOPY (U) (Deprecated, use WRITEBACKIFCOPY) This array is a copy of
some other array. When this array is deallocated, the base array will be updated with the
contents of this array.

FNC F_CONTIGUOUS and not C_CONTIGUOUS.

FORC F_CONTIGUOUS or C_CONTIGUOUS (one-segment test).

BEHAVED (B) ALIGNED and WRITEABLE.

CARRAY (CA) BEHAVED and C_CONTIGUOUS.

FARRAY (FA) BEHAVED and F_CONTIGUOUS and not C_CONTIGUOUS.

5.3. Manual 93

pept Documentation, Release 0.4.1

flat
A 1-D iterator over the array.

This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator
object.

See also:

flatten Return a copy of the array collapsed into one dimension.

flatiter

Examples

>>> x = np.arange(1, 7).reshape(2, 3)
>>> x
array([[1, 2, 3],

[4, 5, 6]])
>>> x.flat[3]
4
>>> x.T
array([[1, 4],

[2, 5],
[3, 6]])

>>> x.T.flat[3]
5
>>> type(x.flat)
<class 'numpy.flatiter'>

An assignment example:

>>> x.flat = 3; x
array([[3, 3, 3],

[3, 3, 3]])
>>> x.flat[[1,4]] = 1; x
array([[3, 1, 3],

[3, 1, 3]])

flatten(order='C')
Return a copy of the array collapsed into one dimension.

Parameters
order [{‘C’, ‘F’, ‘A’, ‘K’}, optional] ‘C’ means to flatten in row-major (C-style) order. ‘F’

means to flatten in column-major (Fortran- style) order. ‘A’ means to flatten in column-
major order if a is Fortran contiguous in memory, row-major order otherwise. ‘K’ means
to flatten a in the order the elements occur in memory. The default is ‘C’.

Returns
y [ndarray] A copy of the input array, flattened to one dimension.

See also:

ravel Return a flattened array.

flat A 1-D flat iterator over the array.

94 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Examples

>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])

getfield(dtype, offset=0)
Returns a field of the given array as a certain type.

A field is a view of the array data with a given data-type. The values in the view are determined by the
given type and the offset into the current array in bytes. The offset needs to be such that the view dtype fits
in the array dtype; for example an array of dtype complex128 has 16-byte elements. If taking a view with
a 32-bit integer (4 bytes), the offset needs to be between 0 and 12 bytes.

Parameters
dtype [str or dtype] The data type of the view. The dtype size of the view can not be larger

than that of the array itself.

offset [int] Number of bytes to skip before beginning the element view.

Examples

>>> x = np.diag([1.+1.j]*2)
>>> x[1, 1] = 2 + 4.j
>>> x
array([[1.+1.j, 0.+0.j],

[0.+0.j, 2.+4.j]])
>>> x.getfield(np.float64)
array([[1., 0.],

[0., 2.]])

By choosing an offset of 8 bytes we can select the complex part of the array for our view:

>>> x.getfield(np.float64, offset=8)
array([[1., 0.],

[0., 4.]])

imag
The imaginary part of the array.

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.imag
array([0. , 0.70710678])
>>> x.imag.dtype
dtype('float64')

item(*args)
Copy an element of an array to a standard Python scalar and return it.

5.3. Manual 95

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

Parameters
*args [Arguments (variable number and type)]

• none: in this case, the method only works for arrays with one element (a.size == 1),
which element is copied into a standard Python scalar object and returned.

• int_type: this argument is interpreted as a flat index into the array, specifying which
element to copy and return.

• tuple of int_types: functions as does a single int_type argument, except that the argument
is interpreted as an nd-index into the array.

Returns
z [Standard Python scalar object] A copy of the specified element of the array as a suit-

able Python scalar

Notes

When the data type of a is longdouble or clongdouble, item() returns a scalar array object because there is
no available Python scalar that would not lose information. Void arrays return a buffer object for item(),
unless fields are defined, in which case a tuple is returned.

item is very similar to a[args], except, instead of an array scalar, a standard Python scalar is returned. This
can be useful for speeding up access to elements of the array and doing arithmetic on elements of the array
using Python’s optimized math.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.item(3)
1
>>> x.item(7)
0
>>> x.item((0, 1))
2
>>> x.item((2, 2))
1

itemset(*args)
Insert scalar into an array (scalar is cast to array’s dtype, if possible)

There must be at least 1 argument, and define the last argument as item. Then, a.itemset(*args) is
equivalent to but faster than a[args] = item. The item should be a scalar value and args must select a
single item in the array a.

Parameters
*args [Arguments] If one argument: a scalar, only used in case a is of size 1. If two ar-

guments: the last argument is the value to be set and must be a scalar, the first argument
specifies a single array element location. It is either an int or a tuple.

96 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#type
https://numpy.org/devdocs/reference/arrays.scalars.html#arrays-scalars
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

Notes

Compared to indexing syntax, itemset provides some speed increase for placing a scalar into a particular
location in an ndarray, if you must do this. However, generally this is discouraged: among other problems,
it complicates the appearance of the code. Also, when using itemset (and item) inside a loop, be sure to
assign the methods to a local variable to avoid the attribute look-up at each loop iteration.

Examples

>>> np.random.seed(123)
>>> x = np.random.randint(9, size=(3, 3))
>>> x
array([[2, 2, 6],

[1, 3, 6],
[1, 0, 1]])

>>> x.itemset(4, 0)
>>> x.itemset((2, 2), 9)
>>> x
array([[2, 2, 6],

[1, 0, 6],
[1, 0, 9]])

itemsize
Length of one array element in bytes.

Examples

>>> x = np.array([1,2,3], dtype=np.float64)
>>> x.itemsize
8
>>> x = np.array([1,2,3], dtype=np.complex128)
>>> x.itemsize
16

max(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the maximum along a given axis.

Refer to numpy.amax for full documentation.

See also:

numpy.amax equivalent function

mean(axis=None, dtype=None, out=None, keepdims=False, *, where=True)
Returns the average of the array elements along given axis.

Refer to numpy.mean for full documentation.

See also:

numpy.mean equivalent function

5.3. Manual 97

https://numpy.org/devdocs/reference/generated/numpy.amax.html#numpy.amax
https://numpy.org/devdocs/reference/generated/numpy.mean.html#numpy.mean

pept Documentation, Release 0.4.1

min(axis=None, out=None, keepdims=False, initial=<no value>, where=True)
Return the minimum along a given axis.

Refer to numpy.amin for full documentation.

See also:

numpy.amin equivalent function

nbytes
Total bytes consumed by the elements of the array.

Notes

Does not include memory consumed by non-element attributes of the array object.

Examples

>>> x = np.zeros((3,5,2), dtype=np.complex128)
>>> x.nbytes
480
>>> np.prod(x.shape) * x.itemsize
480

ndim
Number of array dimensions.

Examples

>>> x = np.array([1, 2, 3])
>>> x.ndim
1
>>> y = np.zeros((2, 3, 4))
>>> y.ndim
3

newbyteorder(new_order='S', /)
Return the array with the same data viewed with a different byte order.

Equivalent to:

arr.view(arr.dtype.newbytorder(new_order))

Changes are also made in all fields and sub-arrays of the array data type.

Parameters
new_order [str, optional] Byte order to force; a value from the byte order specifications

below. new_order codes can be any of:

• ‘S’ - swap dtype from current to opposite endian

• {‘<’, ‘little’} - little endian

• {‘>’, ‘big’} - big endian

98 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.amin.html#numpy.amin
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

• ‘=’ - native order, equivalent to sys.byteorder

• {‘|’, ‘I’} - ignore (no change to byte order)

The default value (‘S’) results in swapping the current byte order.

Returns
new_arr [array] New array object with the dtype reflecting given change to the byte order.

nonzero()
Return the indices of the elements that are non-zero.

Refer to numpy.nonzero for full documentation.

See also:

numpy.nonzero equivalent function

partition(kth, axis=- 1, kind='introselect', order=None)
Rearranges the elements in the array in such a way that the value of the element in kth position is in the
position it would be in a sorted array. All elements smaller than the kth element are moved before this
element and all equal or greater are moved behind it. The ordering of the elements in the two partitions is
undefined.

New in version 1.8.0.

Parameters
kth [int or sequence of ints] Element index to partition by. The kth element value will

be in its final sorted position and all smaller elements will be moved before it and all equal
or greater elements behind it. The order of all elements in the partitions is undefined. If
provided with a sequence of kth it will partition all elements indexed by kth of them into
their sorted position at once.

axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last
axis.

kind [{‘introselect’}, optional] Selection algorithm. Default is ‘introselect’.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need to be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.partition Return a parititioned copy of an array.

argpartition Indirect partition.

sort Full sort.

5.3. Manual 99

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.nonzero.html#numpy.nonzero
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/glossary.html#term-sequence
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.partition.html#numpy.partition

pept Documentation, Release 0.4.1

Notes

See np.partition for notes on the different algorithms.

Examples

>>> a = np.array([3, 4, 2, 1])
>>> a.partition(3)
>>> a
array([2, 1, 3, 4])

>>> a.partition((1, 3))
>>> a
array([1, 2, 3, 4])

prod(axis=None, dtype=None, out=None, keepdims=False, initial=1, where=True)
Return the product of the array elements over the given axis

Refer to numpy.prod for full documentation.

See also:

numpy.prod equivalent function

ptp(axis=None, out=None, keepdims=False)
Peak to peak (maximum - minimum) value along a given axis.

Refer to numpy.ptp for full documentation.

See also:

numpy.ptp equivalent function

put(indices, values, mode='raise')
Set a.flat[n] = values[n] for all n in indices.

Refer to numpy.put for full documentation.

See also:

numpy.put equivalent function

ravel([order])
Return a flattened array.

Refer to numpy.ravel for full documentation.

See also:

numpy.ravel equivalent function

ndarray.flat a flat iterator on the array.

real
The real part of the array.

See also:

100 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.prod.html#numpy.prod
https://numpy.org/devdocs/reference/generated/numpy.ptp.html#numpy.ptp
https://numpy.org/devdocs/reference/generated/numpy.put.html#numpy.put
https://numpy.org/devdocs/reference/generated/numpy.ravel.html#numpy.ravel

pept Documentation, Release 0.4.1

numpy.real equivalent function

Examples

>>> x = np.sqrt([1+0j, 0+1j])
>>> x.real
array([1. , 0.70710678])
>>> x.real.dtype
dtype('float64')

repeat(repeats, axis=None)
Repeat elements of an array.

Refer to numpy.repeat for full documentation.

See also:

numpy.repeat equivalent function

reshape(shape, order='C')
Returns an array containing the same data with a new shape.

Refer to numpy.reshape for full documentation.

See also:

numpy.reshape equivalent function

Notes

Unlike the free function numpy.reshape, this method on ndarray allows the elements of the shape pa-
rameter to be passed in as separate arguments. For example, a.reshape(10, 11) is equivalent to a.
reshape((10, 11)).

resize(new_shape, refcheck=True)
Change shape and size of array in-place.

Parameters
new_shape [tuple of ints, or n ints] Shape of resized array.

refcheck [bool, optional] If False, reference count will not be checked. Default is True.

Returns
None

Raises
ValueError If a does not own its own data or references or views to it exist, and the data

memory must be changed. PyPy only: will always raise if the data memory must be
changed, since there is no reliable way to determine if references or views to it exist.

SystemError If the order keyword argument is specified. This behaviour is a bug in NumPy.

See also:

resize Return a new array with the specified shape.

5.3. Manual 101

https://numpy.org/devdocs/reference/generated/numpy.real.html#numpy.real
https://numpy.org/devdocs/reference/generated/numpy.repeat.html#numpy.repeat
https://numpy.org/devdocs/reference/generated/numpy.reshape.html#numpy.reshape
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#SystemError

pept Documentation, Release 0.4.1

Notes

This reallocates space for the data area if necessary.

Only contiguous arrays (data elements consecutive in memory) can be resized.

The purpose of the reference count check is to make sure you do not use this array as a buffer for another
Python object and then reallocate the memory. However, reference counts can increase in other ways so if
you are sure that you have not shared the memory for this array with another Python object, then you may
safely set refcheck to False.

Examples

Shrinking an array: array is flattened (in the order that the data are stored in memory), resized, and reshaped:

>>> a = np.array([[0, 1], [2, 3]], order='C')
>>> a.resize((2, 1))
>>> a
array([[0],

[1]])

>>> a = np.array([[0, 1], [2, 3]], order='F')
>>> a.resize((2, 1))
>>> a
array([[0],

[2]])

Enlarging an array: as above, but missing entries are filled with zeros:

>>> b = np.array([[0, 1], [2, 3]])
>>> b.resize(2, 3) # new_shape parameter doesn't have to be a tuple
>>> b
array([[0, 1, 2],

[3, 0, 0]])

Referencing an array prevents resizing. . .

>>> c = a
>>> a.resize((1, 1))
Traceback (most recent call last):
...
ValueError: cannot resize an array that references or is referenced ...

Unless refcheck is False:

>>> a.resize((1, 1), refcheck=False)
>>> a
array([[0]])
>>> c
array([[0]])

round(decimals=0, out=None)
Return a with each element rounded to the given number of decimals.

Refer to numpy.around for full documentation.

102 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

See also:

numpy.around equivalent function

searchsorted(v, side='left', sorter=None)
Find indices where elements of v should be inserted in a to maintain order.

For full documentation, see numpy.searchsorted

See also:

numpy.searchsorted equivalent function

setfield(val, dtype, offset=0)
Put a value into a specified place in a field defined by a data-type.

Place val into a’s field defined by dtype and beginning offset bytes into the field.

Parameters
val [object] Value to be placed in field.

dtype [dtype object] Data-type of the field in which to place val.

offset [int, optional] The number of bytes into the field at which to place val.

Returns
None

See also:

getfield

Examples

>>> x = np.eye(3)
>>> x.getfield(np.float64)
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

>>> x.setfield(3, np.int32)
>>> x.getfield(np.int32)
array([[3, 3, 3],

[3, 3, 3],
[3, 3, 3]], dtype=int32)

>>> x
array([[1.0e+000, 1.5e-323, 1.5e-323],

[1.5e-323, 1.0e+000, 1.5e-323],
[1.5e-323, 1.5e-323, 1.0e+000]])

>>> x.setfield(np.eye(3), np.int32)
>>> x
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

5.3. Manual 103

https://numpy.org/devdocs/reference/generated/numpy.around.html#numpy.around
https://numpy.org/devdocs/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None

pept Documentation, Release 0.4.1

setflags(write=None, align=None, uic=None)
Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively.

These Boolean-valued flags affect how numpy interprets the memory area used by a (see Notes below). The
ALIGNED flag can only be set to True if the data is actually aligned according to the type. The WRITE-
BACKIFCOPY and (deprecated) UPDATEIFCOPY flags can never be set to True. The flag WRITEABLE
can only be set to True if the array owns its own memory, or the ultimate owner of the memory exposes a
writeable buffer interface, or is a string. (The exception for string is made so that unpickling can be done
without copying memory.)

Parameters
write [bool, optional] Describes whether or not a can be written to.

align [bool, optional] Describes whether or not a is aligned properly for its type.

uic [bool, optional] Describes whether or not a is a copy of another “base” array.

Notes

Array flags provide information about how the memory area used for the array is to be interpreted. There
are 7 Boolean flags in use, only four of which can be changed by the user: WRITEBACKIFCOPY, UP-
DATEIFCOPY, WRITEABLE, and ALIGNED.

WRITEABLE (W) the data area can be written to;

ALIGNED (A) the data and strides are aligned appropriately for the hardware (as determined by the com-
piler);

UPDATEIFCOPY (U) (deprecated), replaced by WRITEBACKIFCOPY;

WRITEBACKIFCOPY (X) this array is a copy of some other array (referenced by .base). When the C-API
function PyArray_ResolveWritebackIfCopy is called, the base array will be updated with the contents of
this array.

All flags can be accessed using the single (upper case) letter as well as the full name.

Examples

>>> y = np.array([[3, 1, 7],
... [2, 0, 0],
... [8, 5, 9]])
>>> y
array([[3, 1, 7],

[2, 0, 0],
[8, 5, 9]])

>>> y.flags
C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : True
ALIGNED : True
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(write=0, align=0)
>>> y.flags

(continues on next page)

104 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values

pept Documentation, Release 0.4.1

(continued from previous page)

C_CONTIGUOUS : True
F_CONTIGUOUS : False
OWNDATA : True
WRITEABLE : False
ALIGNED : False
WRITEBACKIFCOPY : False
UPDATEIFCOPY : False

>>> y.setflags(uic=1)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: cannot set WRITEBACKIFCOPY flag to True

shape
Tuple of array dimensions.

The shape property is usually used to get the current shape of an array, but may also be used to reshape
the array in-place by assigning a tuple of array dimensions to it. As with numpy.reshape, one of the new
shape dimensions can be -1, in which case its value is inferred from the size of the array and the remaining
dimensions. Reshaping an array in-place will fail if a copy is required.

See also:

numpy.reshape similar function

ndarray.reshape similar method

Examples

>>> x = np.array([1, 2, 3, 4])
>>> x.shape
(4,)
>>> y = np.zeros((2, 3, 4))
>>> y.shape
(2, 3, 4)
>>> y.shape = (3, 8)
>>> y
array([[0., 0., 0., 0., 0., 0., 0., 0.],

[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

>>> y.shape = (3, 6)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: total size of new array must be unchanged
>>> np.zeros((4,2))[::2].shape = (-1,)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: Incompatible shape for in-place modification. Use
`.reshape()` to make a copy with the desired shape.

size
Number of elements in the array.

Equal to np.prod(a.shape), i.e., the product of the array’s dimensions.

5.3. Manual 105

https://numpy.org/devdocs/reference/generated/numpy.reshape.html#numpy.reshape

pept Documentation, Release 0.4.1

Notes

a.size returns a standard arbitrary precision Python integer. This may not be the case with other methods of
obtaining the same value (like the suggested np.prod(a.shape), which returns an instance of np.int_),
and may be relevant if the value is used further in calculations that may overflow a fixed size integer type.

Examples

>>> x = np.zeros((3, 5, 2), dtype=np.complex128)
>>> x.size
30
>>> np.prod(x.shape)
30

sort(axis=- 1, kind=None, order=None)
Sort an array in-place. Refer to numpy.sort for full documentation.

Parameters
axis [int, optional] Axis along which to sort. Default is -1, which means sort along the last

axis.

kind [{‘quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’}, optional] Sorting algorithm. The de-
fault is ‘quicksort’. Note that both ‘stable’ and ‘mergesort’ use timsort under the covers
and, in general, the actual implementation will vary with datatype. The ‘mergesort’ option
is retained for backwards compatibility.

Changed in version 1.15.0: The ‘stable’ option was added.

order [str or list of str, optional] When a is an array with fields defined, this argument
specifies which fields to compare first, second, etc. A single field can be specified as a
string, and not all fields need be specified, but unspecified fields will still be used, in the
order in which they come up in the dtype, to break ties.

See also:

numpy.sort Return a sorted copy of an array.

numpy.argsort Indirect sort.

numpy.lexsort Indirect stable sort on multiple keys.

numpy.searchsorted Find elements in sorted array.

numpy.partition Partial sort.

Notes

See numpy.sort for notes on the different sorting algorithms.

106 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://numpy.org/devdocs/reference/generated/numpy.sort.html#numpy.sort
https://numpy.org/devdocs/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/devdocs/reference/generated/numpy.lexsort.html#numpy.lexsort
https://numpy.org/devdocs/reference/generated/numpy.searchsorted.html#numpy.searchsorted
https://numpy.org/devdocs/reference/generated/numpy.partition.html#numpy.partition

pept Documentation, Release 0.4.1

Examples

>>> a = np.array([[1,4], [3,1]])
>>> a.sort(axis=1)
>>> a
array([[1, 4],

[1, 3]])
>>> a.sort(axis=0)
>>> a
array([[1, 3],

[1, 4]])

Use the order keyword to specify a field to use when sorting a structured array:

>>> a = np.array([('a', 2), ('c', 1)], dtype=[('x', 'S1'), ('y', int)])
>>> a.sort(order='y')
>>> a
array([(b'c', 1), (b'a', 2)],

dtype=[('x', 'S1'), ('y', '<i8')])

squeeze(axis=None)
Remove axes of length one from a.

Refer to numpy.squeeze for full documentation.

See also:

numpy.squeeze equivalent function

std(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
Returns the standard deviation of the array elements along given axis.

Refer to numpy.std for full documentation.

See also:

numpy.std equivalent function

strides
Tuple of bytes to step in each dimension when traversing an array.

The byte offset of element (i[0], i[1], ..., i[n]) in an array a is:

offset = sum(np.array(i) * a.strides)

A more detailed explanation of strides can be found in the “ndarray.rst” file in the NumPy reference guide.

See also:

numpy.lib.stride_tricks.as_strided

5.3. Manual 107

https://numpy.org/devdocs/reference/generated/numpy.squeeze.html#numpy.squeeze
https://numpy.org/devdocs/reference/generated/numpy.std.html#numpy.std
https://numpy.org/devdocs/reference/generated/numpy.lib.stride_tricks.as_strided.html#numpy.lib.stride_tricks.as_strided

pept Documentation, Release 0.4.1

Notes

Imagine an array of 32-bit integers (each 4 bytes):

x = np.array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]], dtype=np.int32)

This array is stored in memory as 40 bytes, one after the other (known as a contiguous block of memory).
The strides of an array tell us how many bytes we have to skip in memory to move to the next position along
a certain axis. For example, we have to skip 4 bytes (1 value) to move to the next column, but 20 bytes (5
values) to get to the same position in the next row. As such, the strides for the array x will be (20, 4).

Examples

>>> y = np.reshape(np.arange(2*3*4), (2,3,4))
>>> y
array([[[0, 1, 2, 3],

[4, 5, 6, 7],
[8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])

>>> y.strides
(48, 16, 4)
>>> y[1,1,1]
17
>>> offset=sum(y.strides * np.array((1,1,1)))
>>> offset/y.itemsize
17

>>> x = np.reshape(np.arange(5*6*7*8), (5,6,7,8)).transpose(2,3,1,0)
>>> x.strides
(32, 4, 224, 1344)
>>> i = np.array([3,5,2,2])
>>> offset = sum(i * x.strides)
>>> x[3,5,2,2]
813
>>> offset / x.itemsize
813

sum(axis=None, dtype=None, out=None, keepdims=False, initial=0, where=True)
Return the sum of the array elements over the given axis.

Refer to numpy.sum for full documentation.

See also:

numpy.sum equivalent function

swapaxes(axis1, axis2)
Return a view of the array with axis1 and axis2 interchanged.

Refer to numpy.swapaxes for full documentation.

See also:

108 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.sum.html#numpy.sum

pept Documentation, Release 0.4.1

numpy.swapaxes equivalent function

take(indices, axis=None, out=None, mode='raise')
Return an array formed from the elements of a at the given indices.

Refer to numpy.take for full documentation.

See also:

numpy.take equivalent function

tobytes(order='C')
Construct Python bytes containing the raw data bytes in the array.

Constructs Python bytes showing a copy of the raw contents of data memory. The bytes object is produced
in C-order by default. This behavior is controlled by the order parameter.

New in version 1.9.0.

Parameters
order [{‘C’, ‘F’, ‘A’}, optional] Controls the memory layout of the bytes object. ‘C’ means

C-order, ‘F’ means F-order, ‘A’ (short for Any) means ‘F’ if a is Fortran contiguous, ‘C’
otherwise. Default is ‘C’.

Returns
s [bytes] Python bytes exhibiting a copy of a’s raw data.

Examples

>>> x = np.array([[0, 1], [2, 3]], dtype='<u2')
>>> x.tobytes()
b'\x00\x00\x01\x00\x02\x00\x03\x00'
>>> x.tobytes('C') == x.tobytes()
True
>>> x.tobytes('F')
b'\x00\x00\x02\x00\x01\x00\x03\x00'

tofile(fid, sep='', format='%s')
Write array to a file as text or binary (default).

Data is always written in ‘C’ order, independent of the order of a. The data produced by this method can
be recovered using the function fromfile().

Parameters
fid [file or str or Path] An open file object, or a string containing a filename.

Changed in version 1.17.0: pathlib.Path objects are now accepted.

sep [str] Separator between array items for text output. If “” (empty), a binary file is written,
equivalent to file.write(a.tobytes()).

format [str] Format string for text file output. Each entry in the array is formatted to text
by first converting it to the closest Python type, and then using “format” % item.

5.3. Manual 109

https://numpy.org/devdocs/reference/generated/numpy.swapaxes.html#numpy.swapaxes
https://numpy.org/devdocs/reference/generated/numpy.take.html#numpy.take
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Notes

This is a convenience function for quick storage of array data. Information on endianness and precision is
lost, so this method is not a good choice for files intended to archive data or transport data between machines
with different endianness. Some of these problems can be overcome by outputting the data as text files, at
the expense of speed and file size.

When fid is a file object, array contents are directly written to the file, bypassing the file object’s write
method. As a result, tofile cannot be used with files objects supporting compression (e.g., GzipFile) or
file-like objects that do not support fileno() (e.g., BytesIO).

tolist()
Return the array as an a.ndim-levels deep nested list of Python scalars.

Return a copy of the array data as a (nested) Python list. Data items are converted to the nearest compatible
builtin Python type, via the ~numpy.ndarray.item function.

If a.ndim is 0, then since the depth of the nested list is 0, it will not be a list at all, but a simple Python
scalar.

Parameters
none

Returns
y [object, or list of object, or list of list of object, or . . .] The possibly nested

list of array elements.

Notes

The array may be recreated via a = np.array(a.tolist()), although this may sometimes lose preci-
sion.

Examples

For a 1D array, a.tolist() is almost the same as list(a), except that tolist changes numpy scalars
to Python scalars:

>>> a = np.uint32([1, 2])
>>> a_list = list(a)
>>> a_list
[1, 2]
>>> type(a_list[0])
<class 'numpy.uint32'>
>>> a_tolist = a.tolist()
>>> a_tolist
[1, 2]
>>> type(a_tolist[0])
<class 'int'>

Additionally, for a 2D array, tolist applies recursively:

>>> a = np.array([[1, 2], [3, 4]])
>>> list(a)
[array([1, 2]), array([3, 4])]

(continues on next page)

110 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

(continued from previous page)

>>> a.tolist()
[[1, 2], [3, 4]]

The base case for this recursion is a 0D array:

>>> a = np.array(1)
>>> list(a)
Traceback (most recent call last):
...

TypeError: iteration over a 0-d array
>>> a.tolist()
1

tostring(order='C')
A compatibility alias for tobytes, with exactly the same behavior.

Despite its name, it returns bytes not strs.

Deprecated since version 1.19.0.

trace(offset=0, axis1=0, axis2=1, dtype=None, out=None)
Return the sum along diagonals of the array.

Refer to numpy.trace for full documentation.

See also:

numpy.trace equivalent function

transpose(*axes)
Returns a view of the array with axes transposed.

For a 1-D array this has no effect, as a transposed vector is simply the same vector. To convert a 1-D array
into a 2D column vector, an additional dimension must be added. np.atleast2d(a).T achieves this, as does
a[:, np.newaxis]. For a 2-D array, this is a standard matrix transpose. For an n-D array, if axes are given,
their order indicates how the axes are permuted (see Examples). If axes are not provided and a.shape
= (i[0], i[1], ... i[n-2], i[n-1]), then a.transpose().shape = (i[n-1], i[n-2], ...
i[1], i[0]).

Parameters
axes [None, tuple of ints, or n ints]

• None or no argument: reverses the order of the axes.

• tuple of ints: i in the j-th place in the tuple means a’s i-th axis becomes a.transpose()’s
j-th axis.

• n ints: same as an n-tuple of the same ints (this form is intended simply as a “conve-
nience” alternative to the tuple form)

Returns
out [ndarray] View of a, with axes suitably permuted.

See also:

transpose Equivalent function

ndarray.T Array property returning the array transposed.

5.3. Manual 111

https://numpy.org/devdocs/reference/generated/numpy.trace.html#numpy.trace
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#tuple
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

ndarray.reshape Give a new shape to an array without changing its data.

Examples

>>> a = np.array([[1, 2], [3, 4]])
>>> a
array([[1, 2],

[3, 4]])
>>> a.transpose()
array([[1, 3],

[2, 4]])
>>> a.transpose((1, 0))
array([[1, 3],

[2, 4]])
>>> a.transpose(1, 0)
array([[1, 3],

[2, 4]])

var(axis=None, dtype=None, out=None, ddof=0, keepdims=False, *, where=True)
Returns the variance of the array elements, along given axis.

Refer to numpy.var for full documentation.

See also:

numpy.var equivalent function

view([dtype][, type])
New view of array with the same data.

Note: Passing None for dtype is different from omitting the parameter, since the former invokes
dtype(None) which is an alias for dtype('float_').

Parameters
dtype [data-type or ndarray sub-class, optional] Data-type descriptor of the returned view,

e.g., float32 or int16. Omitting it results in the view having the same data-type as a. This
argument can also be specified as an ndarray sub-class, which then specifies the type of the
returned object (this is equivalent to setting the type parameter).

type [Python type, optional] Type of the returned view, e.g., ndarray or matrix. Again,
omission of the parameter results in type preservation.

112 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.var.html#numpy.var
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#type

pept Documentation, Release 0.4.1

Notes

a.view() is used two different ways:

a.view(some_dtype) or a.view(dtype=some_dtype) constructs a view of the array’s memory with a
different data-type. This can cause a reinterpretation of the bytes of memory.

a.view(ndarray_subclass) or a.view(type=ndarray_subclass) just returns an instance of ndar-
ray_subclass that looks at the same array (same shape, dtype, etc.) This does not cause a reinterpretation
of the memory.

For a.view(some_dtype), if some_dtype has a different number of bytes per entry than the previous
dtype (for example, converting a regular array to a structured array), then the behavior of the view cannot
be predicted just from the superficial appearance of a (shown by print(a)). It also depends on exactly
how a is stored in memory. Therefore if a is C-ordered versus fortran-ordered, versus defined as a slice or
transpose, etc., the view may give different results.

Examples

>>> x = np.array([(1, 2)], dtype=[('a', np.int8), ('b', np.int8)])

Viewing array data using a different type and dtype:

>>> y = x.view(dtype=np.int16, type=np.matrix)
>>> y
matrix([[513]], dtype=int16)
>>> print(type(y))
<class 'numpy.matrix'>

Creating a view on a structured array so it can be used in calculations

>>> x = np.array([(1, 2),(3,4)], dtype=[('a', np.int8), ('b', np.int8)])
>>> xv = x.view(dtype=np.int8).reshape(-1,2)
>>> xv
array([[1, 2],

[3, 4]], dtype=int8)
>>> xv.mean(0)
array([2., 3.])

Making changes to the view changes the underlying array

>>> xv[0,1] = 20
>>> x
array([(1, 20), (3, 4)], dtype=[('a', 'i1'), ('b', 'i1')])

Using a view to convert an array to a recarray:

>>> z = x.view(np.recarray)
>>> z.a
array([1, 3], dtype=int8)

Views share data:

5.3. Manual 113

pept Documentation, Release 0.4.1

>>> x[0] = (9, 10)
>>> z[0]
(9, 10)

Views that change the dtype size (bytes per entry) should normally be avoided on arrays defined by slices,
transposes, fortran-ordering, etc.:

>>> x = np.array([[1,2,3],[4,5,6]], dtype=np.int16)
>>> y = x[:, 0:2]
>>> y
array([[1, 2],

[4, 5]], dtype=int16)
>>> y.view(dtype=[('width', np.int16), ('length', np.int16)])
Traceback (most recent call last):

...
ValueError: To change to a dtype of a different size, the array must be C-
→˓contiguous
>>> z = y.copy()
>>> z.view(dtype=[('width', np.int16), ('length', np.int16)])
array([[(1, 2)],

[(4, 5)]], dtype=[('width', '<i2'), ('length', '<i2')])

pept.Pipeline

class pept.Pipeline(transformers)
Bases: pept.base.iterable_samples.PEPTObject

A PEPT processing pipeline, chaining multiple Filter and Reducer for efficient, parallel execution.

After a pipeline is constructed, the fit(samples) method can be called, which will apply the chain of filters and
reducers on the samples of data.

A filter is simply a transformation applied to a sample (e.g. Voxelliser on a single sample of LineData). A reducer
is a transformation applied to a list of all samples (e.g. Stack on all samples of PointData).

Note that only filters can be applied in parallel, but the great advantage of a Pipeline is that it significantly reduces
the amount of data copying and intermediate results’ storage. Reducers will require collecting all results.

There are three execution policies at the moment: “sequential” is single-threaded (slower, but easy to debug),
“joblib” (very fast on medium datasets due to joblib’s caching) and any concurrent.futures.Executor subclass
(e.g. MPIPoolExecutor for parallel processing on distributed clusters).

Examples

A pipeline can be created in two ways: either by adding (+) multiple transformers together, or explicitly con-
structing the Pipeline class.

The first method is the most straightforward:

>>> import pept

>>> filter1 = pept.tracking.Cutpoints(max_distance = 0.5)
>>> filter2 = pept.tracking.HDBSCAN(true_fraction = 0.1)

(continues on next page)

114 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

(continued from previous page)

>>> reducer = pept.tracking.Stack()
>>> pipeline = filter1 + filter2 + reducer

>>> print(pipeline)
Pipeline

transformers = [

Cutpoints(append_indices = False, cutoffs = None, max_distance = 0.5)
HDBSCAN(clusterer = HDBSCAN(), max_tracers = 1, true_fraction = 0.1)
Stack(overlap = None, sample_size = None)

]

>>> lors = pept.LineData(...) # Some samples of lines
>>> points = pipeline.fit(lors)

The chain of filters can also be applied to a single sample:

>>> point = pipeline.fit_sample(lors[0])

The pipeline’s fit method allows specifying an execution policy:

>>> points = pipeline.fit(lors, executor = "sequential")
>>> points = pipeline.fit(lors, executor = "joblib")

>>> from mpi4py.futures import MPIPoolExecutor
>>> points = pipeline.fit(lors, executor = MPIPoolExecutor)

The pept.Pipeline constructor can also be called directly, which allows the enumeration of filters:

>>> pipeline = pept.Pipeline([filter1, filter2, reducer])

Adding new filters is very easy:

>>> pipeline_extra = pipeline + filter2

Attributes
transformers [list[pept.base.Filter or pept.base.Reducer]] The list of Transformer

to be applied; this includes both Filter and Reducer instances.

__init__(transformers)
Construct the class from an iterable of Filter, Reducer and/or other Pipeline instances (which will be
flattened).

5.3. Manual 115

https://docs.python.org/3/library/stdtypes.html#list

pept Documentation, Release 0.4.1

Methods

__init__(transformers) Construct the class from an iterable of Filter,
Reducer and/or other Pipeline instances (which
will be flattened).

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply all transformers defined to all samples.
fit_sample(sample) Apply all transformers - consecutively - to a single

sample of data.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
save(filepath) Save a PEPTObject instance as a binary pickle object.
steps() Return the order of processing steps to apply as a

list where all consecutive sequences of filters are col-
lapsed into tuples.

Attributes

filters Only the Filter instances from the transformers.
reducers Only the Reducer instances from the transformers.
transformers The list of Transformer to be applied; this includes

both Filter and Reducer instances.

property filters
Only the Filter instances from the transformers. They can be applied in parallel.

property reducers
Only the Reducer instances from the transformers. They require collecting all parallel results.

property transformers
The list of Transformer to be applied; this includes both Filter and Reducer instances.

fit_sample(sample)
Apply all transformers - consecutively - to a single sample of data. The output type is simply what the
transformers return.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply all transformers defined to all samples. Filters are applied according to the executor policy (e.g.
parallel via “joblib”), while reducers are applied on a single thread.

Parameters
samples [IterableSamples] Any subclass of IterableSamples (e.g. pept.LineData) that

allows iterating through samples of data.

executor [“sequential”, “joblib”, or concurrent.futures.Executor subclass, default
“joblib”] The execution policy controlling how the chain of filters are applied to each sam-
ple in samples; “sequential” is single threaded (slow, but easy to debug), “joblib” is multi-
threaded (very fast due to joblib’s caching). Alternatively, a concurrent.futures.Executor
subclass can be used (e.g. MPIPoolExecutor for distributed computing on clusters).

max_workers [int, optional] The maximum number of workers to use for parallel executors.
If None (default), the maximum number of CPUs are used.

116 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

verbose [bool, default True] If True, show extra information during processing, e.g. load-
ing bars.

steps()
Return the order of processing steps to apply as a list where all consecutive sequences of filters are collapsed
into tuples.

E.g. [F, F, R, F, R, R, F, F, F] -> [(F, F), R, (F), R, R, (F, F, F)].

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

5.3. Manual 117

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

pept Documentation, Release 0.4.1

5.3.3 Auxilliaries

pept.TimeWindow(window) Define a sample_size as a fixed time window / slice.

pept.TimeWindow

class pept.TimeWindow(window: float)
Bases: object

Define a sample_size as a fixed time window / slice. You can use this as a direct replacement of the sample_size
and overlap:

points = pept.PointData(sample_size = pept.TimeWindow(5.5))

__init__(window: float)→ None

Methods

__init__(window)

Attributes

window

window

Base / Abstract Classes (pept.base)

pept.base.PEPTObject() Base class for all PEPT-oriented objects.
pept.base.IterableSamples(data[, . . .]) An class for iterating through an array (or array-like) in

samples with potential overlap.
pept.base.Transformer() Base class for PEPT filters (transforming a sample into

another) and reducers (transforming a list of samples).
pept.base.Filter() Abstract class from which PEPT filters inherit.
pept.base.Reducer() Abstract class from which PEPT reducers inherit.
pept.base.PointDataFilter() An abstract class that defines a filter for samples of

pept.PointData.
pept.base.LineDataFilter() An abstract class that defines a filter for samples of

pept.LineData.
pept.base.VoxelsFilter() An abstract class that defines a filter for samples of

pept.Voxels.

118 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/constants.html#None

pept Documentation, Release 0.4.1

pept.base.PEPTObject

class pept.base.PEPTObject
Bases: object

Base class for all PEPT-oriented objects.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

5.3. Manual 119

https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.IterableSamples

class pept.base.IterableSamples(data, sample_size=None, overlap=None, columns=[], **kwargs)
Bases: pept.base.iterable_samples.PEPTObject, collections.abc.Collection

An class for iterating through an array (or array-like) in samples with potential overlap.

This class can be used to access samples of data of an adaptive sample_size and overlap without requiring
additional storage.

The samples from the underlying data can be accessed using both indexing (samples[0]) and iteration (for
sample in samples: ...).

Particular cases:
1. If sample_size == 0, all data_samples is returned as one single sample.

2. If overlap >= sample_size, an error is raised.

3. If overlap < 0, lines are skipped between samples.

Raises
ValueError If overlap >= sample_size unless sample_size is 0. Overlap must be smaller than

sample_size. Note that it can also be negative.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

Attributes
data [iterable that supports slicing] An iterable (e.g. numpy array) that supports slicing

syntax (data[5:7]) storing the data that will be iterated over in samples.

sample_size [int] The number of rows in data to be returned in a single sample. A sample_size
of 0 yields all the data as a single sample.

overlap [int] The number of overlapping rows from data between two consecutive samples.
An overlap of 0 implies consecutive samples, while an overlap of (sample_size - 1) means
incrementing the samples by one. A negative overlap implies skipping values between sam-
ples.

__init__(data, sample_size=None, overlap=None, columns=[], **kwargs)
IterableSamples class constructor.

Parameters

120 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Collection
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

data [iterable] The data that will be iterated over in samples; most commonly a NumPy array.

sample_size [int or Iterable[Int], optional] The number of rows in data to be returned
in a single sample. A sample_size of 0 yields all the data as a single sample.

overlap [int, optional] The number of overlapping rows from data between two consecutive
samples. An overlap of 0 implies consecutive samples, while an overlap of (sample_size
- 1) means incrementing the samples by one. A negative overlap implies skipping values
between samples.

Methods

__init__(data[, sample_size, overlap, columns]) IterableSamples class constructor.
copy([deep, data, extra, hidden]) Construct a similar object, optionally with different

data.
extra_attrs()

hidden_attrs()

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

attrs

columns

data

overlap

sample_size

samples_indices

property data

property columns

property attrs

extra_attrs()

hidden_attrs()

property samples_indices

property sample_size

5.3. Manual 121

https://docs.python.org/3/glossary.html#term-iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

property overlap

copy(deep=True, data=None, extra=True, hidden=True, **attrs)
Construct a similar object, optionally with different data. If extra, extra attributes are propagated; same for
hidden.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

122 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

pept.base.Transformer

class pept.base.Transformer
Bases: abc.ABC, pept.base.iterable_samples.PEPTObject

Base class for PEPT filters (transforming a sample into another) and reducers (transforming a list of samples).

You should only need to subclass Filter and Reducer (or even, better, their more specialised subclasses, e.g.
LineDataFilter).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 123

https://docs.python.org/3/library/abc.html#abc.ABC

pept Documentation, Release 0.4.1

filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Filter

class pept.base.Filter
Bases: pept.base.pipelines.Transformer

Abstract class from which PEPT filters inherit. You only need to define a method def fit_sample(self, sample),
which processes a single sample.

If you define a filter on LineData, you should subclass LineDataFilter. Same goes for PointData with Point-
DataFilter.

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

abstract fit_sample(sample)

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

124 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.Reducer

class pept.base.Reducer
Bases: pept.base.pipelines.Transformer

Abstract class from which PEPT reducers inherit. You only need to define a method def fit(self, samples), which
processes an iterable of samples (most commonly a LineData or PointData).

__init__(*args, **kwargs)

5.3. Manual 125

pept Documentation, Release 0.4.1

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

abstract fit(samples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

126 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.PointDataFilter

class pept.base.PointDataFilter
Bases: pept.base.pipelines.Filter

An abstract class that defines a filter for samples of pept.PointData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(point_data: collections.abc.Iterable[pept.base.point_data.PointData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

5.3. Manual 127

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.LineDataFilter

class pept.base.LineDataFilter
Bases: pept.base.pipelines.Filter

An abstract class that defines a filter for samples of pept.LineData.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

128 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(line_data: collections.abc.Iterable[pept.base.line_data.LineData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters

5.3. Manual 129

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative
to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.base.VoxelsFilter

class pept.base.VoxelsFilter
Bases: pept.base.pipelines.Filter

An abstract class that defines a filter for samples of pept.Voxels.

An implementor must define the method def fit_sample(self, sample).

A default fit method is provided for convenience, calling fit_sample on each sample from an iterable accord-
ing to a given execution policy (e.g. “sequential”, “joblib”, or concurrent.futures.Executor subclasses, such as
ProcessPoolExecutor or MPIPoolExecutor).

__init__(*args, **kwargs)

Methods

__init__(*args, **kwargs)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(line_data: collections.abc.Iterable[pept.base.voxel_data.Voxels], executor='joblib', max_workers=None,
verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

abstract fit_sample(sample)

130 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Initialising Scanner Data (pept.scanners)

Convert data from different PET / PEPT scanner geometries and data formats into the common base classes.

The PEPT base classes PointData, LineData, and VoxelData are abstractions over the type of data that may be en-
countered in the context of PEPT (e.g. LoRs are LineData, trajectory points are PointData). Once the raw data is
transformed into the common formats, any tracking, analysis or visualisation algorithm in the pept package can be used
interchangeably.

The pept.scanners subpackage provides modules for transforming the raw data from different PET / PEPT scanner
geometries (parallel screens, modular cameras, etc.) and data formats (binary, ASCII, etc.) into the common base
classes.

5.3. Manual 131

pept Documentation, Release 0.4.1

If you’d like to integrate another scanner geometry or raw data format into this package, you can check out the
pept.scanners.parallel_screens function as an example. This usually only involves writing a single function by hand;
then all functionality from LineData will be available to your new data format, for free.

pept.scanners.adac_forte(filepath[, . . .]) Initialise PEPT lines of response (LoRs) from a binary
file outputted by the ADAC Forte parallel screen detector
list mode (common file extension “.da01”).

pept.scanners.parallel_screens(. . . [, . . .]) Initialise PEPT LoRs for parallel screens PET/PEPT de-
tectors from an input CSV file or array.

pept.scanners.ADACGeometricEfficiency(separation)Compute the geometric efficiency of a parallel screens
PEPT detector at different 3D coordinates using Antonio
Guida’s formula [1].

pept.scanners.modular_camera(data_file[, . . .]) Initialise PEPT LoRs from the modular camera DAQ.

pept.scanners.adac_forte

pept.scanners.adac_forte(filepath, sample_size=None, overlap=None, verbose=True)
Initialise PEPT lines of response (LoRs) from a binary file outputted by the ADAC Forte parallel screen detector
list mode (common file extension “.da01”).

Parameters
filepath [str] The path to a ADAC Forte-generated binary file from which the LoRs will be

read into the LineData format. If you have multiple files, use a wildcard (*) after their com-
mon substring to concatenate them, e.g. “DS1.da*” will add [“DS1.da01”, “DS1.da02”,
“DS1.da02_02”].

sample_size [int, default 0] An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the data as one single sample. A good
starting value would be 200 times the maximum number of tracers that would be tracked.

overlap [int, default 0] An int that defines the overlap between two consecutive samples that
are returned when iterating over lines. An overlap of 0 implies consecutive samples, while
an overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

verbose [bool, default True] An option that enables printing the time taken for the initialisa-
tion of an instance of the class. Useful when reading large files (10gb files for PEPT data is
not unheard of).

Returns
LineData The initialised LoRs.

Raises
FileNotFoundError If the input filepath does not exist.

ValueError If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that
it can also be negative.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.read_csv Fast CSV file reading into numpy arrays.

132 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a ParallelScreens array for three LoRs on a parallel screens PEPT scanner (i.e. each line is defined by
two points each) with a head separation of 500 mm:

>>> lors = pept.scanners.adac_forte("binary_data_adac.da01")
Initialised the PEPT data in 0.011 s.

>>> lors
LineData

sample_size = 0
overlap = 0
samples = 1
lines =
[[0.00000000e+00 1.62250000e+02 3.60490000e+02 ... 4.14770000e+02
3.77010000e+02 3.10000000e+02]
[4.19512195e-01 2.05910000e+02 2.68450000e+02 ... 3.51640000e+02
2.95000000e+02 3.10000000e+02]
[8.39024390e-01 3.16830000e+02 1.26260000e+02 ... 2.74350000e+02
3.95300000e+02 3.10000000e+02]
...
[1.98255892e+04 2.64320000e+02 2.43080000e+02 ... 2.25970000e+02
4.01200000e+02 3.10000000e+02]
[1.98263928e+04 3.19780000e+02 3.38660000e+02 ... 2.75530000e+02
5.19200000e+02 3.10000000e+02]
[1.98271964e+04 2.41310000e+02 4.15360000e+02 ... 2.91460000e+02
4.63150000e+02 3.10000000e+02]]

lines.shape = (32526, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.parallel_screens

pept.scanners.parallel_screens(filepath_or_array, screen_separation, sample_size=None, overlap=None,
verbose=True, **kwargs)

Initialise PEPT LoRs for parallel screens PET/PEPT detectors from an input CSV file or array.

The expected data columns in the file are `[time, x1, y1, x2, y2]`. This is automatically transformed into the
standard Lines format with columns being [time, x1, y1, z1, x2, y2, z2], where z1 = 0 and z2 = screen_separation.

ParallelScreens can be initialised with a predefined numpy array of LoRs or read data from a .csv.

Parameters
filepath_or_array [[str, pathlib.Path, IO] or numpy.ndarray (N, 5)] A path to a file to be

read from or an array for initialisation. A path is a string with the (absolute or relative) path
to the data file or a URL from which the PEPT data will be read. It should include the full
file name, along with its extension (.csv, .a01, etc.).

screen_separation [float] The separation (in mm) between the two PEPT screens correspond-
ing to the z coordinate of the second point defining each line. The attribute lines, with
columns [time, x1, y1, z1, x2, y2, z2], will have z1 = 0 and z2 = screen_separation.

5.3. Manual 133

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float

pept Documentation, Release 0.4.1

sample_size [int, default 0] An int that defines the number of lines that should be returned
when iterating over lines. A sample_size of 0 yields all the data as one single sample. A good
starting value would be 200 times the maximum number of tracers that would be tracked.

overlap [int, default 0] An int that defines the overlap between two consecutive samples that
are returned when iterating over lines. An overlap of 0 implies consecutive samples, while
an overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size.

verbose [bool, default True] An option that enables printing the time taken for the initialisa-
tion of an instance of the class. Useful when reading large files (10gb files for PEPT data is
not unheard of).

kwargs [other keyword arguments] Other keyword arguments to be passed to pept.read_csv,
e.g. “skiprows” or “max_rows”. See the pept.read_csv documentation for other arguments.

Returns
LineData The initialised LoRs.

Raises
ValueError If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that

it can also be negative.

ValueError If the data file does not have the (N, M >= 5) shape.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.read_csv Fast CSV file reading into numpy arrays.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

Examples

Initialise a LineData array for three LoRs on a parallel screens PEPT scanner (i.e. each line is defined by two
points each) with a head separation of 500 mm:

>>> lors_raw = np.array([
>>> [2, 100, 150, 200, 250],
>>> [4, 350, 250, 100, 150],
>>> [6, 450, 350, 250, 200]
>>>])

>>> screen_separation = 500
>>> lors = pept.scanners.parallel_screens(lors_raw, screen_separation)
Initialised PEPT data in 0.001 s.

>>> lors
LineData

sample_size = 0
overlap = 0

(continues on next page)

134 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/keyword.html#module-keyword
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

(continued from previous page)

samples = 1
lines =
[[2. 100. 150. 0. 200. 250. 500.]
[4. 350. 250. 0. 100. 150. 500.]
[6. 450. 350. 0. 250. 200. 500.]]

lines.shape = (3, 7)
columns = ['t', 'x1', 'y1', 'z1', 'x2', 'y2', 'z2']

pept.scanners.ADACGeometricEfficiency

class pept.scanners.ADACGeometricEfficiency(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])
Bases: pept.base.iterable_samples.PEPTObject

Compute the geometric efficiency of a parallel screens PEPT detector at different 3D coordinates using Antonio
Guida’s formula [1].

The default xlim and ylim values represent the active detector area of the ADAC Forte scanner used at the Uni-
versity of Birmingham, but can be changed to any parallel screens detector active area range.

This class assumes PEPT coordinates, with the Y and Z axes being swapped, such that Y points upwards and Z
is perpendicular to the two detectors.

References

[1]

Examples

Simply instantiate the class with the head separation, then ‘call’ it with the (x, y, z) coordinates of the point at
which to evaluate the geometric efficiency:

>>> import pept
>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

Alternatively, the separation may be specified using the both the starting and ending limits:

>>> separation = [-10, 510]
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)
>>> eg = geom(250, 250, 250)

You can evaluate multiple points by using a list / array of values:

>>> geom([250, 260], 250, 250)
array([0.18669302, 0.19730517])

Compute the variation in geometric efficiency in the XY plane:

>>> separation = 500
>>> geom = pept.scanners.ADACGeometricEfficiency(separation)

5.3. Manual 135

pept Documentation, Release 0.4.1

>>> # Range of x, y values to evaluate the geometric efficiency at
>>> import numpy as np
>>> x = np.linspace(120, 480, 100)
>>> y = np.linspace(50, 550, 100)
>>> z = 250

>>> # Evaluate EG on a 2D grid of values at all combinations of x, y
>>> xx, yy = np.meshgrid(x, y)
>>> eg = geom(xx, yy, z)

The geometric efficiencies can be visualised using a Plotly heatmap or contour plot:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(go.Contour(x = x, y = y, z = eg))
>>> fig.show()

For an interactive 3D volumetric / voxel plot, you can use PyVista:

>>> # Import necessary libraries; you may need to install PyVista
>>> import numpy as np
>>> import pept
>>> import pyvista as pv

>>> # Instantiate the ADACGeometricEfficiency class
>>> geom = pept.scanners.ADACGeometricEfficiency(500)

>>> # Lower and upper corners of the grid over which to compute the GE
>>> lower = np.array([115, 50, 5])
>>> upper = np.array([490, 550, 495])

>>> # Create 3D meshgrid of values and evaluate the GE at each point
>>> n = 40
>>> x = np.linspace(lower[0], upper[0], n)
>>> y = np.linspace(lower[1], upper[1], n)
>>> z = np.linspace(lower[2], upper[2], n)
>>> xx, yy, zz = np.meshgrid(x, y, z)
>>> eg = geom(xx, yy, zz)

>>> # Create PyVista grid of values
>>> grid = pv.UniformGrid()
>>> grid.dimensions = np.array(eg.shape) + 1
>>> grid.origin = lower
>>> grid.spacing = (upper - lower) / n
>>> grid.cell_arrays["values"] = eg.flatten(order="F")

>>> # Create PyVista volumetric / voxel plot with an interactive clipper
>>> p = pv.Plotter()
>>> p.add_mesh_clip_plane(grid)
>>> p.show()

Attributes

136 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

xlim [(2,) np.ndarray, default [111.78, 491.78]] The limits of the active detector area in the
x-dimension.

ylim [(2,) np.ndarray, default [46.78, 556.78]] The limits of the active detector area in the
y-dimension.

zlim [(2,) np.ndarray] The limits of the active detector area in the z-dimension.

__init__(separation, xlim=[111.78, 491.78], ylim=[46.78, 556.78])

Methods

__init__(separation[, xlim, ylim])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

eg(x, y, z) Return the geometric efficiency evaluated at a single
point (x, y, z) in PEPT coordinates, i.e. Y points up-
wards.

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

eg(x, y, z)
Return the geometric efficiency evaluated at a single point (x, y, z) in PEPT coordinates, i.e. Y points
upwards.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

5.3. Manual 137

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.scanners.modular_camera

pept.scanners.modular_camera(data_file, sample_size=None, overlap=None, verbose=True)
Initialise PEPT LoRs from the modular camera DAQ.

Can read data from a .da_1 file or equivalent. The file must contain the standard datawords from the modular
camera output. This will then be automatically transformed into the standard LineData format with every row
being [time, x1, y1, z1, x2, y2, z2], where the geometry is derived from the C-extension. The current useable
geometry is a square layout with 4 stacks for 4 modules, separated by 250 mm.

Parameters
data_file [str] A string with the (absolute or relative) path to the data file from which the PEPT

data will be read. It should include the full file name, along with the extension (.da_1)

sample_size [int, optional] An int` that defines the number of lines that should be returned
when iterating over _lines. A sample_size of 0 yields all the data as one single sample.
(Default is 200)

overlap [int, optional] An int that defines the overlap between two consecutive samples that
are returned when iterating over _lines. An overlap of 0 means consecutive samples, while
an overlap of (sample_size - 1) means incrementing the samples by one. A negative overlap
means skipping values between samples. An error is raised if overlap is larger than or equal
to sample_size. (Default is 0)

verbose [bool, optional] An option that enables printing the time taken for the initialisation of
an instance of the class. Useful when reading large files (10gb files for PEPT data is not
unheard of). (Default is True)

Returns
LineData The initialised LoRs.

Raises
ValueError If overlap >= sample_size. Overlap has to be smaller than sample_size. Note that

it can also be negative.

ValueError If the data file does not have (N, 7) shape.

138 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Tracking Algorithms (pept.tracking)

Tracer location, identification and tracking algorithms.

The pept.tracking subpackage hosts different tracking algorithms, working with both the base classes, as well as with
generic NumPy arrays.

All algorithms here are either pept.base.Filter or pept.base.Reducer subclasses, implementing the .fit and
.fit_sample methods; here is an example using PEPT-ML:

>>> from pept.tracking import *
>>>
>>> cutpoints = Cutpoints(0.5).fit(lines)
>>> clustered = HDBSCAN(0.15).fit(cutpoints)
>>> centres = (SplitLabels() + Centroids() + Stack()).fit(clustered)

Once the processing steps have been tuned (see the Tutorials), you can chain all filters into a pept.Pipeline for efficient,
parallel execution:

>>> pipeline = (
>>> Cutpoints(0.5) +
>>> HDBSCAN(0.15) +
>>> SplitLabels() + Centroids() + Stack()
>>>)
>>> centres = pipeline.fit(lines)

If you would like to implement a PEPT algorithm, all you need to do is to subclass a pept.base.Filter and define
the method .fit_sample(sample) - and you get parallel execution and pipeline chaining for free!

>>> import pept
>>>
>>> class NewAlgorithm(pept.base.LineDataFilter):
>>> def __init__(self, setting1, setting2 = None):
>>> self.setting1 = setting1
>>> self.setting2 = setting2
>>>
>>> def fit_sample(self, sample: pept.LineData):
>>> processed_points = ...
>>> return pept.PointData(processed_points)

General-Purpose Transformers

pept.tracking.Stack([sample_size, overlap]) Stack iterables - for example a list[pept.LineData]
into a single pept.LineData, a list[list] into a flat-
tened list.

pept.tracking.SplitLabels([remove_labels, . . .]) Split a sample of data into unique label values, option-
ally removing noise and extracting _lines attributes.

pept.tracking.SplitAll(column) Stack all samples and split them into a list according to
a named / numeric column index.

pept.tracking.Centroids([error, cluster_size]) Compute the geometric centroids of a list of samples of
points.

continues on next page

5.3. Manual 139

pept Documentation, Release 0.4.1

Table 28 – continued from previous page
pept.tracking.LinesCentroids([remove, . . .]) Compute the minimum distance point of some pept.

LineData while iteratively removing a fraction of the
furthest lines.

pept.tracking.Condition(*conditions) Select only data satisfying multiple conditions, given as
a string, a function or list thereof; e.g.

pept.tracking.Remove(*columns) Remove columns (either column names or indices) from
pept.LineData or pept.PointData.

pept.tracking.Stack

class pept.tracking.Stack(sample_size=None, overlap=None)
Bases: pept.base.pipelines.Reducer

Stack iterables - for example a list[pept.LineData] into a single pept.LineData, a list[list] into a
flattened list.

Reducer signature:

list[LineData] -> Stack.fit -> LineData
list[PointData] -> Stack.fit -> PointData

list[list[Any]] -> Stack.fit -> list[Any]
list[numpy.ndarray] -> Stack.fit -> numpy.ndarray

other -> Stack.fit -> other

Can optionally set a given sample_size and overlap. This is useful when collecting a list of processed samples
back into a single object.

__init__(sample_size=None, overlap=None)

Methods

__init__([sample_size, overlap])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(samples: collections.abc.Iterable)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

140 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitLabels

class pept.tracking.SplitLabels(remove_labels=True, extract_lines=False, noise=False)
Bases: pept.base.pipelines.Filter

Split a sample of data into unique label values, optionally removing noise and extracting _lines attributes.

Filter signature:

`extract_lines` = False (default)
LineData -> SplitLabels.fit_sample -> list[LineData]
PointData -> SplitLabels.fit_sample -> list[PointData]

`extract_lines` = True and PointData.lines exists
PointData -> SplitLabels.fit_sample -> list[LineData]

5.3. Manual 141

pept Documentation, Release 0.4.1

The sample of data must have a column named exactly “label”. The filter normally removes the “label” column
in the output (if remove_label = True).

__init__(remove_labels=True, extract_lines=False, noise=False)

Methods

__init__([remove_labels, extract_lines, noise])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample: pept.base.iterable_samples.IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

142 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.SplitAll

class pept.tracking.SplitAll(column)
Bases: pept.base.pipelines.Reducer

Stack all samples and split them into a list according to a named / numeric column index.

Reducer signature:

LineData -> SplitAll.fit -> list[LineData]
list[LineData] -> SplitAll.fit -> list[LineData]

PointData -> SplitAll.fit -> list[PointData]
list[PointData] -> SplitAll.fit -> list[PointData]

numpy.ndarray -> SplitAll.fit -> list[numpy.ndarray]
list[numpy.ndarray] -> SplitAll.fit -> list[numpy.ndarray]

If using a LineData / PointData, you can use a columns name as a string, e.g. SplitAll("label") or a number
SplitAll(4). If using a NumPy array, only numeric indices are accepted.

__init__(column)

Methods

__init__(column)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 143

pept Documentation, Release 0.4.1

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

fit(samples: collections.abc.Iterable)

144 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

pept.tracking.Centroids

class pept.tracking.Centroids(error=False, cluster_size=False)
Bases: pept.base.pipelines.Filter

Compute the geometric centroids of a list of samples of points.

Filter signature:

PointData -> Centroids.fit_sample -> PointData
list[PointData] -> Centroids.fit_sample -> PointData
numpy.ndarray -> Centroids.fit_sample -> PointData

This filter can be used right after pept.tracking.SplitLabels, e.g.:

>>> (SplitLabels() + Centroids()).fit(points)

__init__(error=False, cluster_size=False)

Methods

__init__([error, cluster_size])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(points)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

5.3. Manual 145

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.LinesCentroids

class pept.tracking.LinesCentroids(remove=0.1, iterations=6)
Bases: pept.base.pipelines.Filter

Compute the minimum distance point of some pept.LineData while iteratively removing a fraction of the
furthest lines.

Filter signature:

list[LineData] -> LinesCentroids.fit_sample -> PointData
LineData -> LinesCentroids.fit_sample -> PointData
numpy.ndarray -> LinesCentroids.fit_sample -> PointData

The code below is adapted from the PEPT-EM algorithm developed by Antoine Renaud and Sam Manger

__init__(remove=0.1, iterations=6)

146 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Methods

__init__([remove, iterations])

centroid(lors)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

distance_matrix(x, lors)

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

predict(lines)

save(filepath) Save a PEPTObject instance as a binary pickle object.

static centroid(lors)

static distance_matrix(x, lors)

predict(lines)

fit_sample(lines)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

5.3. Manual 147

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Condition

class pept.tracking.Condition(*conditions)
Bases: pept.base.pipelines.Filter

Select only data satisfying multiple conditions, given as a string, a function or list thereof; e.g.
Condition("error < 15") selects all points whose “error” column value is smaller than 15.

Filter signature:

PointData -> Condition.fit_sample -> PointData
LineData -> Condition.fit_sample -> LineData

In the simplest case, a column name is specified, plus a comparison, e.g. Condition("error < 15, y >
100"); multiple conditions may be concatenated using a comma.

More complex conditions - where the column name is not the first operand - can be constructed using single
quotes, e.g. using NumPy functions in Condition("np.isfinite('x')") to filter out NaNs and Infs. Quotes
can be used to index columns too: Condition("'0' < 150") selects all rows whose first column is smaller
than 150.

Generally, you can use any function returning a boolean mask, either as a string of code Condition("np.
isclose('x', 3)") or a user-defined function receiving a NumPy array Condition(lambda x: x[:, 0]
< 10).

Finally, multiple such conditions may be supplied separately: Condition(lambda x: x[:, -1] > 10,
"'t' < 50").

148 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

__init__(*conditions)

Methods

__init__(*conditions)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

conditions

property conditions

fit_sample(sample: pept.base.iterable_samples.IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

5.3. Manual 149

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Remove

class pept.tracking.Remove(*columns)
Bases: pept.base.pipelines.Filter

Remove columns (either column names or indices) from pept.LineData or pept.PointData.

Filter signature:

pept.LineData -> Remove.fit_sample -> pept.LineData
pept.PointData -> Remove.fit_sample -> pept.PointData

Examples

To remove a single column named “line_index”:

>>> import pept
>>> from pept.tracking import *
>>> points = pept.PointData(...) # Some dummy data

>>> rem = Remove("line_index")
>>> points_without = rem.fit_sample(points)

Remove all columns starting with “line_index” using a glob operator (*):

150 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

>>> points_without = Remove("line_index*").fit_sample(points)

Remove the first column based on its index:

>>> points_without = Remove(0).fit_sample(points)

Finally, multiple removals may be chained into a list:

>>> points_without = Remove(["line_index*", -1]).fit_sample(points)

__init__(*columns)

Methods

__init__(*columns)

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(samples[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

Attributes

columns

property columns

fit_sample(sample: pept.base.iterable_samples.IterableSamples)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(samples: collections.abc.Iterable, executor='joblib', max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

5.3. Manual 151

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Space Transformers

pept.tracking.Voxelize(number_of_voxels[, . . .]) Asynchronously voxelize samples of lines from a
pept.LineData.

pept.tracking.Interpolate(timestep[, . . .]) Interpolate between data points at a fixed sampling rate;
useful for Eulerian fields computation.

pept.tracking.Voxelize

class pept.tracking.Voxelize(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)
Bases: pept.base.pipelines.LineDataFilter

Asynchronously voxelize samples of lines from a pept.LineData.

Filter signature:

LineData -> Voxelize.fit_sample -> PointData

This filter is much more memory-efficient than voxelizing all samples of LoRs at once - which often overflows

152 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

the available memory. Most often this is used alongside voxel-based tracking algorithms, e.g. pept.tracking.
FPI:

>>> from pept.tracking import *
>>> pipeline = pept.Pipeline([
>>> Voxelize((50, 50, 50)),
>>> FPI(3, 0.4),
>>> Stack(),
>>>])

Parameters
number_of_voxels [3-tuple] A tuple-like containing exactly three integers specifying the num-

ber of voxels to be used in each dimension.

xlim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in
the x-dimension, formatted as [x_min, x_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

ylim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in
the y-dimension, formatted as [y_min, y_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

zlim [(2,) list[float], optional] The lower and upper boundaries of the voxellised volume in
the z-dimension, formatted as [z_min, z_max]. If undefined, it is inferred from the bounding
box of each sample of lines.

set_lines [(N, 7) numpy.ndarray or pept.LineData, optional] If defined, set the system limits
upon creating the class to the bounding box of the lines in set_lines.

__init__(number_of_voxels, xlim=None, ylim=None, zlim=None, set_lims=None)

Methods

__init__(number_of_voxels[, xlim, ylim, . . .])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.
set_lims(lines[, set_xlim, set_ylim, set_zlim])

5.3. Manual 153

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#float
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Attributes

number_of_voxels

xlim

ylim

zlim

set_lims(lines, set_xlim=True, set_ylim=True, set_zlim=True)

property number_of_voxels

property xlim

property ylim

property zlim

fit_sample(sample_lines)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data: collections.abc.Iterable[pept.base.line_data.LineData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

154 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Interpolate

class pept.tracking.Interpolate(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>,
**kwargs)

Bases: pept.base.pipelines.PointDataFilter

Interpolate between data points at a fixed sampling rate; useful for Eulerian fields computation.

Filter signature:

PointData -> Interpolate.fit_sample -> PointData

By default, the linear interpolator scipy.interpolate.interp1d is used. You can specify a different interpolator and
keyword arguments to send it. E.g. nearest-neighbour interpolation: Interpolate(1., kind = "nearest")
or cubic interpolation: Interpolate(1., kind = "cubic").

All data columns except timestamps are interpolated.

__init__(timestep, interpolator=<class 'scipy.interpolate.interpolate.interp1d'>, **kwargs)

Methods

__init__(timestep[, interpolator])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 155

pept Documentation, Release 0.4.1

fit_sample(sample)

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data: collections.abc.Iterable[pept.base.point_data.PointData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

156 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Tracer Locating Algorithms

pept.tracking.BirminghamMethod([fopt,
get_used])

The Birmingham Method is an efficient, analytical tech-
nique for tracking tracers using the LoRs from PEPT
data.

pept.tracking.Cutpoints(max_distance[, . . .]) Transform LoRs (a pept.LineData instance) into cut-
points (a pept.PointData instance) for clustering, in par-
allel.

pept.tracking.Minpoints(num_lines,
max_distance)

Transform LoRs (a pept.LineData instance) into min-
points (a pept.PointData instance) for clustering, in par-
allel.

pept.tracking.HDBSCAN(true_fraction[, . . .]) Use HDBSCAN to cluster some pept.PointData and
append a cluster label to each point.

pept.tracking.FPI([w, r, lld_counts, verbose]) FPI is a modern voxel-based tracer-location algorithm
that can reliably work with unknown numbers of tracers
in fast and noisy environments.

pept.tracking.BirminghamMethod

class pept.tracking.BirminghamMethod(fopt=0.5, get_used=False)
Bases: pept.base.pipelines.LineDataFilter

The Birmingham Method is an efficient, analytical technique for tracking tracers using the LoRs from PEPT data.

Two main methods are provided: fit_sample for tracking a single numpy array of LoRs (i.e. a single sample) and
fit which tracks all the samples encapsulated in a pept.LineData class in parallel.

For the given sample of LoRs (a numpy.ndarray), this function minimises the distance between all of the LoRs,
rejecting a fraction of lines that lie furthest away from the calculated distance. The process is repeated iteratively
until a specified fraction (fopt) of the original subset of LORs remains.

This class is a wrapper around the birmingham_method subroutine (implemented in C), providing tools for asyn-
chronously tracking samples of LoRs. It can return PointData classes which can be easily manipulated and
visualised.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.utilities.read_csv Fast CSV file reading into numpy arrays.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

pept.scanners.ParallelScreens Initialise a pept.LineData instance from parallel screens PEPT detectors.

5.3. Manual 157

pept Documentation, Release 0.4.1

Examples

A typical workflow would involve reading LoRs from a file, instantiating a BirminghamMethod class, tracking
the tracer locations from the LoRs, and plotting them.

>>> import pept
>>> from pept.tracking.birmingham_method import BirminghamMethod

>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> bham = BirminghamMethod()
>>> locations = bham.fit(lors) # this is a `pept.PointData` instance

>>> grapher = PlotlyGrapher()
>>> grapher.add_points(locations)
>>> grapher.show()

Attributes
fopt [float] Floating-point number between 0 and 1, representing the target fraction of LoRs

in a sample used to locate a tracer.

get_used [bool, default False] If True, attach an attribute ._lines to the output PointData
containing the sample of LoRs used (+ a column used).

__init__(fopt=0.5, get_used=False)
BirminghamMethod class constructor.

fopt [float, default 0.5] Float number between 0 and 1, representing the fraction of remaining LORs in a
sample used to locate the particle.

verbose [bool, default False] Print extra information when initialising this class.

Methods

__init__([fopt, get_used]) BirminghamMethod class constructor.
copy([deep]) Create a deep copy of an instance of this class, in-

cluding all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample) Use the Birmingham method to track a tracer location

from a numpy array (i.e.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(sample)
Use the Birmingham method to track a tracer location from a numpy array (i.e. one sample) of LoRs.

For the given sample of LoRs (a numpy.ndarray), this function minimises the distance between all of the
LoRs, rejecting a fraction of lines that lie furthest away from the calculated distance. The process is repeated
iteratively until a specified fraction (fopt) of the original subset of LORs remains.

Parameters

158 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False

pept Documentation, Release 0.4.1

sample [(N, M>=7) numpy.ndarray] The sample of LORs that will be clustered. Each LoR
is expressed as a timestamps and a line defined by two points; the data columns are then
[time, x1, y1, z1, x2, y2, z2, extra. . .].

get_used [bool, default False] If True, the function will also return a boolean mask of the
LoRs used to compute the tracer location - that is, a vector of the same length as sample,
containing 1 for the rows that were used, and 0 otherwise.

as_array [bool, default True] If set to True, the tracked locations are returned as numpy
arrays. If set to False, they are returned inside an instance of pept.PointData for ease of
iteration and plotting.

verbose [bool, default False] Provide extra information when tracking a location: time
the operation and show a progress bar.

Returns
locations [numpy.ndarray or pept.PointData] The tracked locations found.

used [numpy.ndarray, optional] If get_used is true, then also return a boolean mask of the
LoRs used to compute the tracer location - that is, a vector of the same length as sample,
containing 1 for the rows that were used, and 0 otherwise. [Used for multi-particle tracking,
not implemented yet]

Raises
ValueError If sample is not a numpy array of shape (N, M), where M >= 7.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data: collections.abc.Iterable[pept.base.line_data.LineData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

5.3. Manual 159

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

pept.tracking.Cutpoints

class pept.tracking.Cutpoints(max_distance, cutoffs=None, append_indices=False)
Bases: pept.base.pipelines.LineDataFilter

Transform LoRs (a pept.LineData instance) into cutpoints (a pept.PointData instance) for clustering, in parallel.

Under typical usage, the Cutpoints class is initialised with a pept.LineData instance, automatically calculating
the cutpoints from the samples of lines. The Cutpoints class inherits from pept.PointData, such that once the
cutpoints have been computed, all the methods from the parent class pept.PointData can be used on them (such
as visualisation functionality).

For more control over the operations, pept.tracking.peptml.find_cutpoints can be used - it receives a generic
numpy array of LoRs (one ‘sample’) and returns a numpy array of cutpoints.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.tracking.HDBSCAN Efficient, parallel HDBSCAN-based clustering of (cut)points.

pept.read_csv Fast CSV file reading into numpy arrays.

Examples

Compute the cutpoints for a LineData instance between lines that are less than 0.1 apart:

>>> line_data = pept.LineData(example_data)
>>> cutpts = peptml.Cutpoints(0.1).fit(line_data)

Compute the cutpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.Cutpoints(0.1).fit_sample(sample)

Attributes

160 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

max_distance [float] The maximum distance between any two lines for their cutpoint to be
considered. A good starting value would be 0.1 mm for small tracers and/or clean data, or
0.2 mm for larger tracers and/or noisy data.

cutoffs [list-like of length 6] A list (or equivalent) of the cutoff distances for every axis, format-
ted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the cutpoints which fall within
these cutoff distances are considered. The default is None, in which case they are automati-
cally computed using pept.tracking.peptml.get_cutoffs.

__init__(max_distance, cutoffs=None, append_indices=False)
Cutpoints class constructor.

Parameters
line_data [instance of pept.LineData] The LoRs for which the cutpoints will be com-

puted. It must be an instance of pept.LineData.

max_distance [float] The maximum distance between any two lines for their cutpoint to
be considered. A good starting value would be 0.1 mm for small tracers and/or clean data,
or 0.5 mm for larger tracers and/or noisy data.

cutoffs [list-like of length 6, optional] A list (or equivalent) of the cutoff distances for every
axis, formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the cutpoints which
fall within these cutoff distances are considered. The default is None, in which case they
are automatically computed using pept.tracking.peptml.get_cutoffs.

append_indices [bool, default False] If set to True, the indices of the individual LoRs
that were used to compute each cutpoint are also appended to the returned array.

Raises
ValueError If cutoffs is not a one-dimensional array with values formatted as [min_x,

max_x, min_y, max_y, min_z, max_z].

Methods

__init__(max_distance[, cutoffs, append_indices]) Cutpoints class constructor.
copy([deep]) Create a deep copy of an instance of this class, in-

cluding all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 161

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Attributes

append_indices

cutoffs

max_distance

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data: collections.abc.Iterable[pept.base.line_data.LineData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property max_distance

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

162 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property cutoffs

property append_indices

fit_sample(sample_lines)

pept.tracking.Minpoints

class pept.tracking.Minpoints(num_lines, max_distance, cutoffs=None, append_indices=False)
Bases: pept.base.pipelines.LineDataFilter

Transform LoRs (a pept.LineData instance) into minpoints (a pept.PointData instance) for clustering, in parallel.

Given a sample of lines, the minpoints are the minimum distance points (MDPs) for every possible combination
of num_lines lines that satisfy the following conditions:

1. Are within the cutoffs.

2. Are closer to all the constituent LoRs than max_distance.

Under typical usage, the Minpoints class is initialised with a pept.LineData instance, automatically calculating
the minpoints from the samples of lines. The Minpoints class inherits from pept.PointData, such that once the
cutpoints have been computed, all the methods from the parent class pept.PointData can be used on them (such
as visualisation functionality).

For more control over the operations, pept.tracking.peptml.find_minpoints can be used - it receives a generic
numpy array of LoRs (one ‘sample’) and returns a numpy array of cutpoints.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.tracking.peptml.HDBSCANClusterer Efficient, parallel HDBSCAN-based clustering of cutpoints.

pept.scanners.ParallelScreens Read in and initialise a pept.LineData instance from parallel screens
PET/PEPT detectors.

pept.utilities.read_csv Fast CSV file reading into numpy arrays.

5.3. Manual 163

pept Documentation, Release 0.4.1

Notes

Once instantiated with a LineData, the class computes the minpoints and automatically sets the sample_size to
the average number of minpoints found per sample of LoRs.

Examples

Compute the minpoints for a LineData instance for all triplets of lines that are less than 0.1 from those lines:

>>> line_data = pept.LineData(example_data)
>>> minpts = peptml.Minpoints(line_data, 3, 0.1)

Compute the minpoints for a single sample:

>>> sample = line_data[0]
>>> cutpts_sample = peptml.find_minpoints(sample, 3, 0.1)

Attributes
line_data [instance of pept.LineData] The LoRs for which the cutpoints will be computed.

It must be an instance of pept.LineData.

num_lines: int The number of lines in each combination of LoRs used to compute the MDP.
This function considers every combination of num_lines from the input sample_lines. It
must be smaller or equal to the number of input lines sample_lines.

max_distance: float The maximum allowed distance between an MDP and its constituent lines.
If any distance from the MDP to one of its lines is larger than max_distance, the MDP is
thrown away. A good starting value would be 0.1 mm for small tracers and/or clean data, or
0.2 mm for larger tracers and/or noisy data.

cutoffs [list-like of length 6] A list (or equivalent) of the cutoff distances for every axis, for-
matted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the minpoints which fall
within these cutoff distances are considered. The default is None, in which case they are
automatically computed using pept.tracking.peptml.get_cutoffs.

sample_size, overlap, number_of_lines, etc. [inherited from pept.PointData] Addi-
tional attributes and methods are inherited from the base class PointData. Check its doc-
umentation for more information.

Methods

find_minpoints(line_data, num_lines,
max_distance, cutoffs = None, append_indices
= False, max_workers = None, verbose = True)

Compute the minpoints from the samples in a LineData
instance.

sample, to_csv, plot, etc. (inherited from pept.PointData) Additional attributes
and methods are inherited from the base class PointData.
Check its documentation for more information.

__init__(num_lines, max_distance, cutoffs=None, append_indices=False)
Cutpoints class constructor.

Parameters

164 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

line_data [instance of pept.LineData] The LoRs for which the cutpoints will be com-
puted. It must be an instance of pept.LineData.

num_lines: int The number of lines in each combination of LoRs used to compute the MDP.
This function considers every combination of num_lines from the input sample_lines. It
must be smaller or equal to the number of input lines sample_lines.

max_distance: float The maximum allowed distance between an MDP and its constituent
lines. If any distance from the MDP to one of its lines is larger than max_distance, the MDP
is thrown away. A good starting value would be 0.1 mm for small tracers and/or clean data,
or 0.2 mm for larger tracers and/or noisy data.

cutoffs [list-like of length 6, optional] A list (or equivalent) of the cutoff distances for every
axis, formatted as [x_min, x_max, y_min, y_max, z_min, z_max]. Only the minpoints which
fall within these cutoff distances are considered. The default is None, in which case they
are automatically computed using pept.tracking.peptml.get_cutoffs.

append_indices [bool, default False] If set to True, the indices of the individual LoRs
that were used to compute each minpoint are also appended to the returned array.

max_workers [int, optional] The maximum number of threads that will be used for asyn-
chronously computing the minpoints from the samples of LoRs in line_data.

verbose [bool, default True] Provide extra information when computing the cutpoints:
time the operation and show a progress bar.

Raises
TypeError If line_data is not an instance of pept.LineData.

ValueError If 2 <= num_lines <= len(sample_lines) is not satisfied.

ValueError If cutoffs is not a one-dimensional array with values formatted as [min_x,
max_x, min_y, max_y, min_z, max_z].

Methods

__init__(num_lines, max_distance[, cutoffs, . . .]) Cutpoints class constructor.
copy([deep]) Create a deep copy of an instance of this class, in-

cluding all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(sample_lines)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 165

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Attributes

append_indices

cutoffs

max_distance

num_lines

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data: collections.abc.Iterable[pept.base.line_data.LineData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property num_lines

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

166 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

property max_distance

property cutoffs

property append_indices

fit_sample(sample_lines)

pept.tracking.HDBSCAN

class pept.tracking.HDBSCAN(true_fraction, max_tracers=1)
Bases: pept.base.pipelines.PointDataFilter

Use HDBSCAN to cluster some pept.PointData and append a cluster label to each point.

Filter signature:

PointData -> HDBSCAN.fit_sample -> PointData

The only free parameter to select is the true_fraction, a relative measure of the ratio of inliers to outliers. A
noisy sample - e.g. first pass of clustering of cutpoints - may need a value of 0.15. A cleaned up dataset - e.g. a
second pass of clustering - can work with 0.6.

You can also set the maximum number of tracers visible at any one time in the system in max_tracers (default
1). This is simply an inverse scaling factor, but the true_fraction is quite robust with varying numbers of
tracers.

__init__(true_fraction, max_tracers=1)

Methods

__init__(true_fraction[, max_tracers])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(sample_points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

5.3. Manual 167

pept Documentation, Release 0.4.1

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data: collections.abc.Iterable[pept.base.point_data.PointData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

fit_sample(sample_points)

168 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

pept.tracking.FPI

class pept.tracking.FPI(w=3.0, r=0.4, lld_counts=0.0, verbose=False)
Bases: pept.base.pipelines.VoxelsFilter

FPI is a modern voxel-based tracer-location algorithm that can reliably work with unknown numbers of tracers
in fast and noisy environments.

It was successfully used to track fast-moving radioactive tracers in pipe flows at the Virginia Commonwealth
University. If you use this algorithm in your work, please cite the following paper:

Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle
tracking with multiple tracers. Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment. 2017 Jan 21; 843:22-8.

Permission was granted by Dr. Cody Wiggins in March 2021 to publish his code in the pept library under the
GNU v3.0 license.

Two main methods are provided: fit_sample for tracking a single voxel space (i.e. a single pept.Voxels) and fit
which tracks all the samples encapsulated in a pept.VoxelData class in parallel.

See also:

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

pept.utilities.read_csv Fast CSV file reading into numpy arrays.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

Examples

A typical workflow would involve reading LoRs from a file, creating a lazy VoxelData voxellised representation,
instantiating an FPI class, tracking the tracer locations from the LoRs, and plotting them.

>>> import pept
>>>
>>> lors = pept.LineData(...) # set sample_size and overlap appropriately
>>> voxels = pept.tracking.Voxelize((50, 50, 50)).fit(lors)
>>>
>>> fpi = pept.tracking.FPI(w = 3, r = 0.4)
>>> positions = fpi.fit(voxels) # this is a `pept.PointData` instance

A much more efficient approach would be to create a pept.Pipeline containing a voxelization step and then FPI:

>>> from pept.tracking import *
>>>
>>> pipeline = Voxelize((50, 50, 50)) + FPI() + Stack()
>>> positions = pipeline.fit(lors)

Finally, plotting results:

>>> from pept.plots import PlotlyGrapher
>>>
>>> grapher = PlotlyGrapher()
>>> grapher.add_points(positions)
>>> grapher.show()

5.3. Manual 169

pept Documentation, Release 0.4.1

>>> from pept.plots import PlotlyGrapher2D
>>> PlotlyGrapher2D().add_timeseries(positions).show()

Attributes
w: double Search range to be used in local maxima calculation. Typical values for w are 2 - 5

(lower number for more particles or smaller particle separation).

r: double Fraction of peak value used as threshold. Typical values for r are usually between 0.3
and 0.6 (lower for more particles, higher for greater background noise)

lld_counts: double, default 0 A secondary lld to prevent assigning local maxima to voxels with
very low values. The parameter lld_counts is not used much in practice - for most cases, it
can be set to zero.

__init__(w=3.0, r=0.4, lld_counts=0.0, verbose=False)
FPI class constructor.

Parameters
w: double Search range to be used in local maxima calculation. Typical values for w are 2 -

5 (lower number for more particles or smaller particle separation).

r: double Fraction of peak value used as threshold. Typical values for r are usually between
0.3 and 0.6 (lower for more particles, higher for greater background noise)

lld_counts: double, default 0 A secondary lld to prevent assigning local maxima to voxels
with very low values. The parameter lld_counts is not used much in practice - for most
cases, it can be set to zero.

verbose: bool, default False Show extra information on class instantiation.

Methods

__init__([w, r, lld_counts, verbose]) FPI class constructor.
copy([deep]) Create a deep copy of an instance of this class, in-

cluding all inner attributes.
fit(line_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)

according to the execution policy.
fit_sample(voxels) Use the FPI algorithm to locate a tracer from a single

voxellised space (i.e.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(voxels: pept.base.voxel_data.Voxels)
Use the FPI algorithm to locate a tracer from a single voxellised space (i.e. from one sample of LoRs).

A sample of LoRs can be voxellised using the pept.Voxels.from_lines method before calling this function.

Parameters
voxels: pept.Voxels A single voxellised space (i.e. from a single sample of LoRs) for which

the tracers’ locations will be found using the FPI method.

timestamp: float, default 0. The timestamp to associate with the tracer positions found in
this voxel space.

170 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

as_array: bool, default False If True, return the found tracers’ locations as a NumPy array.
Otherwise, return them in a pept.PointData instance.

verbose: bool, default False Show extra information on the sample processing step.

Returns
locations: numpy.ndarray or pept.PointData The tracked locations found; if as_array

is True, they are returned as a NumPy array with columns [time, x, y, z, error_x, error_y,
error_z]. If as_array is False, the points are returned in a pept.PointData for ease of visu-
alisation.

Raises
TypeError If voxels is not an instance of pept.Voxels (or subclass thereof).

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(line_data: collections.abc.Iterable[pept.base.voxel_data.Voxels], executor='joblib', max_workers=None,
verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

5.3. Manual 171

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Trajectory Separation Algorithms

pept.tracking.Segregate(window, cut_distance) Segregate the intertwined points from multiple trajecto-
ries into individual paths.

pept.tracking.Segregate

class pept.tracking.Segregate(window, cut_distance, min_trajectory_size=5)
Bases: pept.base.pipelines.Reducer

Segregate the intertwined points from multiple trajectories into individual paths.

Reducer signature:

pept.PointData -> Segregate.fit_sample -> pept.PointData
list[pept.PointData] -> Segregate.fit_sample -> pept.PointData

The points in point_data (a numpy array or pept.PointData) are used to construct a minimum spanning tree
in which every point can only be connected to points_window points around it - this “window” refers to the
points in the initial data array, sorted based on the time column; therefore, only points within a certain time-
frame can be connected. All edges (or “connections”) in the minimum spanning tree that are larger than trajec-
tory_cut_distance are removed (or “cut”) and the remaining connected “clusters” are deemed individual trajec-
tories if they contain more than min_trajectory_size points.

The trajectory indices (or labels) are appended to point_data. That is, for each data point (i.e. row) in point_data,
a label will be appended starting from 0 for the corresponding trajectory; a label of -1 represents noise. If
point_data is a numpy array, a new numpy array is returned; if it is a pept.PointData instance, a new instance is
returned.

This function uses single linkage clustering with a custom metric for spatio-temporal data to segregate trajectory
points. The single linkage clustering was optimised for this use-case: points are only connected if they are within
a certain points_window in the time-sorted input array. Sparse matrices are also used for minimising the memory
footprint.

See also:

connect_trajectories Connect segregated trajectories based on tracer signatures.

PlotlyGrapher Easy, publication-ready plotting of PEPT-oriented data.

172 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

Examples

A typical workflow would involve transforming LoRs into points using some tracking algorithm. These points
include all tracers moving through the system, being intertwined (e.g. for two tracers A and B, the point_data
array might have two entries for A, followed by three entries for B, then one entry for A, etc.). They can be
segregated based on position alone using this function; take for example two tracers that go downwards (below,
‘x’ is the position, and in parens is the array index at which that point is found).

`points`, numpy.ndarray, shape (10, 4), columns [time, x, y, z]:
x (1) x (2)
x (3) x (4)
x (5) x (7)
x (6) x (9)
x (8) x (10)

>>> import pept.tracking.trajectory_separation as tsp
>>> points_window = 10
>>> trajectory_cut_distance = 15 # mm
>>> segregated_trajectories = tsp.segregate_trajectories(
>>> points, points_window, trajectory_cut_distance
>>>)

`segregated_trajectories`, numpy.ndarray, shape (10, 5),
columns [time, x, y, z, trajectory_label]:

x (1, label = 0) x (2, label = 1)
x (3, label = 0) x (4, label = 1)
x (5, label = 0) x (7, label = 1)
x (6, label = 0) x (9, label = 1)
x (8, label = 0) x (10, label = 1)

Attributes
window [int] Two points are “reachable” (i.e. they can be connected) if and only if they are

within points_window in the time-sorted input point_data. As the points from different tra-
jectories are intertwined (e.g. for two tracers A and B, the point_data array might have two
entries for A, followed by three entries for B, then one entry for A, etc.), this should opti-
mally be the largest number of points in the input array between two consecutive points on
the same trajectory. If points_window is too small, all points in the dataset will be unreach-
able. Naturally, a larger time_window correponds to more pairs needing to be checked (and
the function will take a longer to complete).

cut_distance [float] Once all the closest points are connected (i.e. the minimum spanning tree
is constructed), separate all trajectories that are further apart than trajectory_cut_distance.

min_trajectory_size [float, default 5] After the trajectories have been cut, declare all tra-
jectories with fewer points than min_trajectory_size as noise.

__init__(window, cut_distance, min_trajectory_size=5)

5.3. Manual 173

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

pept Documentation, Release 0.4.1

Methods

__init__(window, cut_distance[, . . .])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(points)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit(points: collections.abc.Iterable[pept.base.point_data.PointData])

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

174 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

Post Processing Algorithms

pept.tracking.Velocity(window[, degree, . . .]) Append the dimension-wise or absolute velocity to sam-
ples of points using a 2D fitted polynomial in a rolling
window mode.

pept.tracking.Velocity

class pept.tracking.Velocity(window, degree=2, absolute=False)
Bases: pept.base.pipelines.PointDataFilter

Append the dimension-wise or absolute velocity to samples of points using a 2D fitted polynomial in a rolling
window mode.

Filter signature:

PointData -> Velocity.fit_sample -> PointData

If Numba is installed, a fast, natively-compiled algorithm is used.

If absolute = False, the “vx”, “vy” and “vz” columns are appended. If absolute = True, then the “v” column is
appended.

__init__(window, degree=2, absolute=False)

Methods

__init__(window[, degree, absolute])

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

fit(point_data[, executor, max_workers, verbose]) Apply self.fit_sample (implemented by subclasses)
according to the execution policy.

fit_sample(samples)

load(filepath) Load a saved / pickled PEPTObject object from
filepath.

save(filepath) Save a PEPTObject instance as a binary pickle object.

fit_sample(samples)

5.3. Manual 175

pept Documentation, Release 0.4.1

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

fit(point_data: collections.abc.Iterable[pept.base.point_data.PointData], executor='joblib',
max_workers=None, verbose=True)
Apply self.fit_sample (implemented by subclasses) according to the execution policy. Simply return a list of
processed samples. If you need a reduction step (e.g. stack all processed samples), apply it in the subclass.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

176 Chapter 5. Indices and tables

https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable

pept Documentation, Release 0.4.1

Post Processing (pept.processing)

The PEPT-oriented post-processing suite, including occupancy grid, vector velocity fields, etc.

This module contains fast, robust functions that operate on PEPT-like data and integrate with the pept library’s base
classes.

pept.processing.circles2d(positions, . . . [, . . .]) Compute the 2D occupancy of circles of different radii.
pept.processing.occupancy2d(points, . . . [, . . .]) Compute the 2D occupancy / residence time distribution

of a single circular particle moving along a trajectory.

pept.processing.circles2d

pept.processing.circles2d(positions, number_of_pixels, radii=0.0, xlim=None, ylim=None, verbose=True)
Compute the 2D occupancy of circles of different radii.

This corresponds to the pixellisation of circular particles, such that each pixel’s value corresponds to the area
covered by the particle.

You must specify the particles’ positions (2D numpy array) and the number_of_pixels in each dimension ([nx,
ny, nz]). The radii can be either:

1. Zero: the particles are considered to be points. Each pixel will have a value +1 for every particle.

2. Single positive value: all particles have the same radius.

3. List of values of same length as positions: specify each particle’s radius.

The pixel area’s bounds can be specified in xlim and ylim. If unset, they will be computed automatically based
on the minimum and maximum values found in positions.

Parameters
positions: (P, 2) numpy.ndarray The particles’ 2D positions, where each row is formatted as

[x_coordinate, y_coordinate].

number_of_pixels: (2,) list-like The number of pixels in the x-dimension and y-dimension.
Each dimension must have at least 2 pixels.

radii: float or (P,) list-like The radius of each particle. If zero, every particle is considered as a
discrete point. If a single float, all particles are considered to have the same radius. If it is a
numpy array, it specifies each particle’s radius, and must have the same length as positions.

xlim: (2,) list-like, optional The limits of the system over which the pixels span in the x-
dimension, formatted as [xmin, xmax]. If unset, they will be computed automatically based
on the minimum and maximum values found in positions.

ylim: (2,) list-like, optional The limits of the system over which the pixels span in the y-
dimension, formatted as [ymin, ymax]. If unset, they will be computed automatically based
on the minimum and maximum values found in positions.

verbose: bool, default True Time the pixellisation step and print it to the terminal.

Returns
pept.Pixels (numpy.ndarray subclass) The created pixels, each cell containing the area

covered by particles. The pept.Pixels class inherits all properties and methods from
numpy.ndarray, so you can use it exactly like you would a numpy array. It just contains
extra attributes (e.g. xlim, ylim) and some PEPT-oriented methods (e.g. pixels_trace).

Raises

5.3. Manual 177

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

ValueError If positions is not a 2D array-like with exactly 2 columns, or number_of_pixels is
not a 1D list-like with exactly 2 values or it contains a value smaller than 2. If radii is a
list-like that does not have the same length as positions.

Examples

Create ten random particle positions between 0-100 and radii between 0.5-2.5:

>>> positions = np.random.random((10, 2)) * 100
>>> radii = 0.5 + np.random.random(len(positions)) * 2

Now pixellise those particles as circles over a grid of (20, 10) pixels:

>>> import pept.processing as pp
>>> num_pixels = (20, 10)
>>> pixels = pp.circles2d(positions, num_pixels, radii)

Alternatively, specify the system’s bounds explicitly:

>>> pixels = pp.circles2d(
>>> positions, (20, 10), radii, xlim = [10, 90], ylim = [-5, 105]
>>>)

You can plot those pixels in two ways - using PlotlyGrapher (this plots a 3D “heatmap”, as a coloured surface):

>>> from pept.visualisation import PlotlyGrapher
>>> grapher = PlotlyGrapher()
>>> grapher.add_pixels(pixels)
>>> grapher.show()

Or using raw Plotly (this plots a “true” heatmap) - this is recommended:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

pept.processing.occupancy2d

pept.processing.occupancy2d(points, number_of_pixels, radius, xlim=None, ylim=None, omit_last=False,
verbose=True)

Compute the 2D occupancy / residence time distribution of a single circular particle moving along a trajectory.

This corresponds to the pixellisation of moving circular particles, such that for every two consecutive particle
locations, a 2D cylinder (i.e. convex hull of two circles at the two particle positions), the fraction of its area that
intersets a pixel is multiplied with the time between the two particle locations and saved in the input pixels.

You must specify the points (2D numpy array) recorded along a particle’s trajectory, formatted as [time, x, y] of
each location, along with the number_of_pixels in each dimension ([nx, ny]) and particle radius.

The pixel area’s bounds can be specified in xlim and ylim. If unset, they will be computed automatically based
on the minimum and maximum values found in points.

Parameters

178 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

points: (P, 3) numpy.ndarray The particles’ 2D locations and corresponding timestamp, where
each row is formatted as [time, x_coordinate, y_coordinate]. Must have at least two points.

number_of_pixels: (2,) list-like The number of pixels in the x-dimension and y-dimension.
Each dimension must have at least 2 pixels.

radius: float The radius of the particle. It can be given in any system of units, as long as it is
consistent with what is used for the particle locations.

xlim: (2,) list-like, optional The limits of the system over which the pixels span in the x-
dimension, formatted as [xmin, xmax]. If unset, they will be computed automatically based
on the minimum and maximum values found in positions.

ylim: (2,) list-like, optional The limits of the system over which the pixels span in the y-
dimension, formatted as [ymin, ymax]. If unset, they will be computed automatically based
on the minimum and maximum values found in positions.

omit_last: bool, default False If true, omit the last circle in the particle positions. Useful if
rasterizing the same trajectory piece-wise; if you split the trajectory and call this function
multiple times, set omit_last = 0 to avoid considering the last particle location twice.

verbose: bool, default True Time the pixellisation step and print it to the terminal.

Returns
pept.Pixels (numpy.ndarray subclass) The created pixels, each cell containing the area

covered by particles. The pept.Pixels class inherits all properties and methods from
numpy.ndarray, so you can use it exactly like you would a numpy array. It just contains
extra attributes (e.g. xlim, ylim) and some PEPT-oriented methods (e.g. pixels_trace).

Raises
ValueError If positions is not a 2D array-like with exactly 3 columns, or number_of_pixels is

not a 1D list-like with exactly 2 values or it contains a value smaller than 2. If xlim or ylim
have max < min or there are particle positions falling outside the system defined by xlim and
ylim, including the area.

Examples

Create ten random particle positions between 0-100 and radius 0.2:

>>> positions = np.random.random((10, 2)) * 100
>>> radius = 0.2

Now pixellise this trajectory over a grid of (20, 10) pixels:

>>> import pept.processing as pp
>>> num_pixels = (20, 10)
>>> pixels = pp.occupancy2d(positions, num_pixels, radius)

Alternatively, specify the system’s bounds explicitly:

>>> pixels = pp.occupancy2d(
>>> positions, (20, 10), radius, xlim = [10, 90], ylim = [-5, 105]
>>>)

You can plot those pixels in two ways - using PlotlyGrapher (this plots a 3D “heatmap”, as a coloured surface):

5.3. Manual 179

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

>>> from pept.visualisation import PlotlyGrapher
>>> grapher = PlotlyGrapher()
>>> grapher.add_pixels(pixels)
>>> grapher.show()

Or using raw Plotly (this plots a “true” heatmap) - this is recommended:

>>> import plotly.graph_objs as go
>>> fig = go.Figure()
>>> fig.add_trace(pixels.heatmap_trace())
>>> fig.show()

Visualisation (pept.plots)

PEPT-oriented visulisation tools.

Visualisation functions and classes for PEPT data, transparently working with both pept base classes and raw NumPy
arrays (e.g. PlotlyGrapher.add_lines handles both pept.LineData and (N, 7) NumPy arrays).

The PlotlyGrapher class creates interactive, publication-ready 3D figures with optional subplots which can also be
exported to portable HTML files. The PlotlyGrapher2D class is its two-dimensional counterpart, handling e.g.
pept.Pixels.

pept.plots.PlotlyGrapher([rows, cols, xlim, . . .]) A class for PEPT data visualisation using Plotly-based
3D graphs.

pept.plots.PlotlyGrapher2D([rows, cols, . . .]) A class for PEPT data visualisation using Plotly-based
2D graphs.

pept.plots.PlotlyGrapher

class pept.plots.PlotlyGrapher(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])
Bases: pept.base.iterable_samples.PEPTObject

A class for PEPT data visualisation using Plotly-based 3D graphs.

The PlotlyGrapher class can create and automatically configure an arbitrary number of 3D subplots for PEPT
data visualisation. They are by default set to use the alternative PEPT 3D axes convention - having the y-axis
pointing upwards, such that the vertical screens of a PEPT scanner represent the xy-plane.

This class can be used to draw 3D scatter or line plots, with optional colour-coding using extra data columns
(e.g. relative tracer activity or trajectory label).

It also provides easy access to the most common configuration parameters for the plots, such as axes limits,
subplot titles, colorbar titles, etc. It can work with pre-computed Plotly traces (such as the ones from the pept
base classes), as well as with numpy arrays.

Raises
ValueError If xlim, ylim or zlim are not lists of length 2.

180 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Examples

The figure is created when instantiating the class.

>>> grapher = PlotlyGrapher()
>>> lors = LineData(raw_lors...) # Some example lines
>>> points = PointData(raw_points...) # Some example points

Creating a trace based on a numpy array:

>>> sample_lors = lors[0] # A numpy array of a single sample
>>> sample_points = points[0]
>>> grapher.add_lines(sample_lors)
>>> grapher.add_points(sample_points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default Plotly renderer:

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher.lines_trace(lines)
>>> PlotlyGrapher.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines methods.

Attributes
xlim [list or numpy.ndarray] A list of length 2, formatted as [x_min, x_max], where x_min

is the lower limit of the x-axis of all the subplots and x_max is the upper limit of the x-axis
of all the subplots.

ylim [list or numpy.ndarray] A list of length 2, formatted as [y_min, y_max], where y_min
is the lower limit of the y-axis of all the subplots and y_max is the upper limit of the y-axis
of all the subplots.

zlim [list or numpy.ndarray] A list of length 2, formatted as [z_min, z_max], where z_min
is the lower limit of the z-axis of all the subplots and z_max is the upper limit of the z-axis
of all the subplots.

fig [Plotly.Figure instance] A Plotly.Figure instance, with any number of subplots (as de-
fined by rows and cols) pre-configured for PEPT data.

__init__(rows=1, cols=1, xlim=None, ylim=None, zlim=None, subplot_titles=[' '])
PlotlyGrapher class constructor.

Parameters
rows [int, optional] The number of rows of subplots. The default is 1.

cols [int, optional] The number of columns of subplots. The default is 1.

xlim [list or numpy.ndarray, optional] A list of length 2, formatted as [x_min, x_max],
where x_min is the lower limit of the x-axis of all the subplots and x_max is the upper limit
of the x-axis of all the subplots.

5.3. Manual 181

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

ylim [list or numpy.ndarray, optional] A list of length 2, formatted as [y_min, y_max],
where y_min is the lower limit of the y-axis of all the subplots and y_max is the upper limit
of the y-axis of all the subplots.

zlim [list or numpy.ndarray, optional] A list of length 2, formatted as [z_min, z_max],
where z_min is the lower limit of the z-axis of all the subplots and z_max is the upper limit
of the z-axis of all the subplots.

subplot_titles [list of str, default [” “]] A list of the titles of the subplots - e.g. [“plot
a)”, “plot b)”]. The default is a list of empty strings.

Raises
ValueError If rows < 1 or cols < 1.

ValueError If xlim, ylim or zlim are not lists of length 2.

Methods

__init__([rows, cols, xlim, ylim, zlim, . . .]) PlotlyGrapher class constructor.
add_lines(lines[, row, col, width, color, . . .]) Create and plot a trace for all the lines in a numpy

array or pept.LineData, with possible color-coding.
add_pixels(pixels[, row, col, condition, . . .]) Create and plot a trace with all the pixels in this class,

with possible filtering.
add_points(points[, row, col, size, color, . . .]) Create and plot a trace for all the points in a numpy

array or pept.PointData, with possible color-coding.
add_trace(trace[, row, col]) Add a precomputed Plotly trace to a given subplot.
add_traces(traces[, row, col]) Add a list of precomputed Plotly traces to a given sub-

plot.
add_voxels(voxels[, row, col, condition, . . .]) Create and plot a trace for all the voxels in a

pept.Voxels or pept.VoxelData instance, with possi-
ble filtering.

copy([deep]) Create a deep copy of an instance of this class, in-
cluding all inner attributes.

create_figure() Create a Plotly figure, pre-configured for PEPT data.
equalise_axes() Equalise the axes of all subplots by setting the system

limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

lines_trace(lines[, width, color, opacity, . . .]) Static method for creating a Plotly trace of lines.
load(filepath) Load a saved / pickled PEPTObject object from

filepath.
points_trace(points[, size, color, opacity, . . .]) Static method for creating a Plotly trace of points.
save(filepath) Save a PEPTObject instance as a binary pickle object.
show([equal_axes]) Show the Plotly figure, optionally setting equal axes

limits.
to_html(filepath[, equal_axes, include_plotlyjs]) Save the current Plotly figure as a self-contained

HTML webpage.
xlabel(label[, row, col])

ylabel(label[, row, col])

zlabel(label[, row, col])

182 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Attributes

fig

xlim

ylim

zlim

create_figure()
Create a Plotly figure, pre-configured for PEPT data.

This function creates a Plotly figure with an arbitrary number of subplots, as given in the class instantiation
call. It configures them to have the y-axis pointing upwards, as per the PEPT 3D axes convention. It also
sets the axes limits and labels.

Returns
fig [Plotly Figure instance] A Plotly Figure instance, with any number of subplots (as

defined when instantiating the class) pre-configured for PEPT data.

property xlim

property ylim

property zlim

property fig

xlabel(label, row=1, col=1)

ylabel(label, row=1, col=1)

zlabel(label, row=1, col=1)

static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=- 1,
colorscale='Magma', colorbar_title=None)

Static method for creating a Plotly trace of points. See PlotlyGrapher.add_points for the full documentation.

add_points(points, row=1, col=1, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=- 1,
colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the points in a numpy array or pept.PointData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the points included in the numpy array or
pept.PointData instance (or subclass thereof!) points and adds it to the subplot determined by row and
col.

The expected data row is [time, x1, y1, z1, . . .].

Parameters
points [(M, N >= 4) numpy.ndarray or pept.PointData] The expected data columns are:

[time, x1, y1, z1, etc.]. If a pept.PointData instance (or subclass thereof) is received, the
inner points will be used.

row [int, default 1] The row of the subplot to add a trace to.

5.3. Manual 183

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

col [int, default 1] The column of the subplot to add a trace to.

size [float, default 2.0] The marker size of the points.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

colorbar_col [int, default -1] The column in points that will be used to color the points.
Only has an effect if colorbar is set to True. The default is -1 (the last column).

colorscale [str, default “Magma”] The Plotly scheme for color-coding the colorbar_col
column in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full
list is given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True
and color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Raises
ValueError If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None) and there are fewer than 10 unique values
in the colorbar_col column in points, then the points for each unique label will be added as separate traces.

This is helpful for cases such as when plotting points with labelled trajectories, as when there are fewer
than 10 trajectories, the distinct colours automatically used by Plotly when adding multiple traces allow the
points to be better distinguished.

Examples

Add an array of points (data columns: [time, x, y, z]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_points(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_points(point_data)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you can plot every 10th point using
slices:

>>> pts = np.array(...) # shape (N, M >= 4), N very large
>>> grapher.add_points(pts[::10])

184 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

static lines_trace(lines, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0,
colorscale='Magma', colorbar_title=None)

Static method for creating a Plotly trace of lines. See PlotlyGrapher.add_lines for the full documentation.

add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6, colorbar=True, colorbar_col=0,
colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the lines in a numpy array or pept.LineData, with possible color-coding.

Creates a plotly.graph_objects.Scatter3d object for all the lines included in the numpy array or
pept.LineData instance (or subclass thereof!) lines and adds it to the subplot determined by row and col.

It expects LoR-like data, where each line is defined by two points. The expected data columns are [time,
x1, y1, z1, x2, y2, z2, . . .].

Parameters
lines [(M, N >= 7) numpy.ndarray or pept.LineData] The expected data columns: [time,

x1, y1, z1, x2, y2, z2, etc.]. If a pept.LineData instance (or subclass thereof) is received,
the inner lines will be used.

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

width [float, default 2.0] The width of the lines.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.6] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the data in the lines column
colorbar_col. Is overridden if color is set. The default is True, so that every line has a
different color.

colorbar_col [int, default 0] The column in the data samples that will be used to color
the points. Only has an effect if colorbar is set to True. The default is 0 (the first column -
time).

colorscale [str, default “Magma”] The Plotly scheme for color-coding the colorbar_col
column in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full
list is given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True
and color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Raises
ValueError If lines is not a numpy.ndarray with shape (M, N), where N >= 7.

5.3. Manual 185

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Examples

Add an array of lines (data columns: [t, x1, y1, z1, x2, y2, z2]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines_raw = np.array(...) # shape (N, M >= 7)
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

Add all the lines in a LineData instance:

>>> line_data = pept.LineData(...) # Some example data
>>> grapher.add_lines(line_data)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 7), N very large
>>> grapher.add_lines(lines_raw[::10])

add_pixels(pixels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, opacity=0.9,
colorscale='Magma')

Create and plot a trace with all the pixels in this class, with possible filtering.

Creates a plotly.graph_objects.Surface object for the centres of all pixels encapsulated in a pept.Pixels
instance, colour-coding the pixel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all pixels that have a value larger than 0.

Parameters
voxels [pept.Pixels] The pixel space, encapsulated in a pept.Pixels instance (or subclass

thereof). Only pept.Pixels are accepted as raw pixels on their own do not contain data about
the spatial coordinates of the pixel box.

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

condition [function, default lambda pixels: pixels > 0] The filtering function applied to
the pixel data before plotting it. It should return a boolean mask (a numpy array of the same
shape, filled with True and False), selecting all pixels that should be plotted. The default,
lambda x: x > 0 selects all pixels which have a value larger than 0.

opacity [float, default 0.4] The opacity of the surface, where 0 is transparent and 1 is
fully opaque.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

186 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_trace(pixels.pixels_trace())
>>> grapher.show()

add_voxels(voxels, row=1, col=1, condition=<function PlotlyGrapher.<lambda>>, size=4, color=None,
opacity=0.4, colorbar=True, colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the voxels in a pept.Voxels or pept.VoxelData instance, with possible filtering.

Creates a plotly.graph_objects.Scatter3d object for the centres of all voxels encapsulated in a pept.Voxels
instance, colour-coding the voxel value. The trace is added to the subplot determined by row and col.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all voxels that have a value larger than 0.

Parameters
voxels [pept.Voxels or pept.VoxelData] The voxel space, encapsulated in a pept.Voxels

or pept.VoxelData instance (or subclass thereof). If a VoxelData is received, all the voxels
will be accumulated / superimpoesd. Only these classes are accepted as raw voxels on their
own do not contain data about the spatial coordinates of the voxel box.

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

condition [function, default lambda voxel_data: voxel_data > 0] The filtering function
applied to the voxel data before plotting it. It should return a boolean mask (a numpy array
of the same shape, filled with True and False), selecting all voxels that should be plotted.
The default, lambda x: x > 0 selects all voxels which have a value larger than 0.

size [float, default 4] The size of the plotted voxel points. Note that due to the large
number of voxels in typical applications, the voxel centres are plotted as square points,
which provides an easy to understand image that is also fast and responsive.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.4] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the voxel values. Is overridden
if color is set.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the voxel values
in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is
given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and
color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Raises

5.3. Manual 187

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

TypeError If voxels is not an instance of pept.Voxels or subclass thereof.

Examples

Voxellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> number_of_voxels = [10, 10, 10]
>>> voxels = pept.Voxels(lines, number_of_voxels)
>>> grapher.add_lines(lines)
>>> grapher.add_voxels(voxels)
>>> grapher.show()

add_trace(trace, row=1, col=1)
Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

Parameters
trace [Plotly trace (Scatter3d)] A precomputed Plotly trace

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

add_traces(traces, row=1, col=1)
Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

Parameters
traces [list [Plotly trace (Scatter3d)]] A list of precomputed Plotly traces

row [int, default 1] The row of the subplot to add the traces to.

col [int, default 1] The column of the subplot to add the traces to.

copy(deep=True)
Create a deep copy of an instance of this class, including all inner attributes.

equalise_axes()
Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

static load(filepath)
Load a saved / pickled PEPTObject object from filepath.

Most often the full object state was saved using the .save method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Returns
pept.PEPTObject subclass instance The loaded object.

188 Chapter 5. Indices and tables

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

save(filepath)
Save a PEPTObject instance as a binary pickle object.

Saves the full object state, including inner attributes, in a portable binary format. Load back the object
using the load method.

Parameters
filepath [filename or file handle] If filepath is a path (rather than file handle), it is relative

to where python is called.

Examples

Save a LineData instance, then load it back:

>>> lines = pept.LineData([[1, 2, 3, 4, 5, 6, 7]])
>>> lines.save("lines.pickle")

>>> lines_reloaded = pept.LineData.load("lines.pickle")

show(equal_axes=True)
Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer (e.g. browser, or PDF). The available
renderers can be found by running the following code:

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

Parameters
equal_axes [bool, default True] Set xlim, ylim, zlim to equal ranges such that the axes

limits are equalised. Only has an effect if xlim, ylim and zlim are all None. If False, the
default Plotly behaviour is used (i.e. automatically use min, max for each dimension).

to_html(filepath, equal_axes=True, include_plotlyjs=True)
Save the current Plotly figure as a self-contained HTML webpage.

Parameters
filepath [str or writeable] Path or open file descriptor to save the HTML file to.

5.3. Manual 189

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

equal_axes [bool, default True] Set xlim, ylim to equal ranges such that the axes limits are
equalised. Only has an effect if both xlim and ylim are None. If False, the default Plotly
behaviour is used (i.e. automatically use min, max for each dimension).

include_plotlyjs [True or “cdn”, default True] If True, embed the Plotly.JS library in the
HTML file, allowing the graph to be shown offline, but adding 3 MB. If “cdn”, the Plotly.JS
library will be downloaded dynamically.

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.plots.PlotlyGrapher2D

class pept.plots.PlotlyGrapher2D(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)
Bases: object

A class for PEPT data visualisation using Plotly-based 2D graphs.

The PlotlyGrapher class can create and automatically configure an arbitrary number of 2D subplots for PEPT
data visualisation.

This class can be used to draw 2D scatter or line plots, with optional colour-coding using extra data columns
(e.g. relative tracer activity or trajectory label).

It also provides easy access to the most common configuration parameters for the plots, such as axes limits,
subplot titles, colorbar titles, etc. It can work with pre-computed Plotly traces (such as the ones from the pept
base classes), as well as with numpy arrays.

Examples

The figure is created when instantiating the class.

>>> import numpy as np
>>> from pept.visualisation import PlotlyGrapher2D

>>> grapher = PlotlyGrapher2D()
>>> lines = np.random.random((100, 5)) # columns [t, x1, y1, x2, y2]
>>> points = np.random.random((100, 3)) # columns [t, x, y]

Creating a trace based on a numpy array:

>>> grapher.add_lines(lines)
>>> grapher.add_points(points)

Showing the plot:

>>> grapher.show()

If you’d like to show the plot in your browser, you can set the default Plotly renderer:

190 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

>>> import plotly
>>> plotly.io.renderers.default = "browser"

Return pre-computed traces that you can add to other figures:

>>> PlotlyGrapher2D.lines_trace(lines)
>>> PlotlyGrapher2D.points_trace(points)

More examples are given in the docstrings of the add_points, add_lines methods.

Attributes
xlim [list or numpy.ndarray] A list of length 2, formatted as [x_min, x_max], where x_min

is the lower limit of the x-axis of all the subplots and x_max is the upper limit of the x-axis
of all the subplots.

ylim [list or numpy.ndarray] A list of length 2, formatted as [y_min, y_max], where y_min
is the lower limit of the y-axis of all the subplots and y_max is the upper limit of the y-axis
of all the subplots.

fig [Plotly.Figure instance] A Plotly.Figure instance, with any number of subplots (as de-
fined by rows and cols) pre-configured for PEPT data.

__init__(rows=1, cols=1, xlim=None, ylim=None, subplot_titles=[' '], **kwargs)
PlotlyGrapher class constructor.

Parameters
rows [int, optional] The number of rows of subplots. The default is 1.

cols [int, optional] The number of columns of subplots. The default is 1.

xlim [list or numpy.ndarray, optional] A list of length 2, formatted as [x_min, x_max],
where x_min is the lower limit of the x-axis of all the subplots and x_max is the upper limit
of the x-axis of all the subplots.

ylim [list or numpy.ndarray, optional] A list of length 2, formatted as [y_min, y_max],
where y_min is the lower limit of the y-axis of all the subplots and y_max is the upper limit
of the y-axis of all the subplots.

subplot_titles [list of str, default [” “]] A list of the titles of the subplots - e.g. [“plot
a)”, “plot b)”]. The default is a list of empty strings.

Raises
ValueError If rows < 1 or cols < 1.

ValueError If xlim or ylim are not lists of length 2.

Methods

__init__([rows, cols, xlim, ylim, . . .]) PlotlyGrapher class constructor.
add_lines(lines[, row, col, width, color, . . .]) Create and plot a trace for all the lines in a numpy

array, with possible color-coding.
add_pixels(pixels[, row, col, colorscale, . . .]) Create and plot a trace with all the pixels in this class,

with possible filtering.
add_points(points[, row, col, size, color, . . .]) Create and plot a trace for all the points in a numpy

array, with possible color-coding.
continues on next page

5.3. Manual 191

https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Table 58 – continued from previous page
add_timeseries(points[, rows_cols, size, . . .]) Add a timeseries plot for each dimension in points vs.
add_trace(trace[, row, col]) Add a precomputed Plotly trace to a given subplot.
add_traces(traces[, row, col]) Add a list of precomputed Plotly traces to a given sub-

plot.
create_figure(**kwargs) Create a Plotly figure, pre-configured for PEPT data.
equalise_axes() Equalise the axes of all subplots by setting the system

limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

equalise_separate() Equalise the axes of all subplots individually by set-
ting the system limits in each dimension to equal val-
ues, such that all data plotted is within the plotted
bounds.

lines_trace(lines[, width, color, opacity]) Static method for creating a Plotly trace of lines.
points_trace(points[, size, color, opacity, . . .]) Static method for creating a Plotly trace of points.
show([equal_axes]) Show the Plotly figure, optionally setting equal axes

limits.
timeseries_trace(points[, size, color, . . .]) Static method for creating a list of 3 Plotly traces of

timeseries.
to_html(filepath[, equal_axes, include_plotlyjs]) Save the current Plotly figure as a self-contained

HTML webpage.
xlabel(label[, row, col])

ylabel(label[, row, col])

Attributes

fig

xlim

ylim

create_figure(**kwargs)
Create a Plotly figure, pre-configured for PEPT data.

This function creates a Plotly figure with an arbitrary number of subplots, as given in the class instantiation
call.

Returns
fig [Plotly Figure instance] A Plotly Figure instance, with any number of subplots (as

defined when instantiating the class) pre-configured for PEPT data.

property xlim

property ylim

xlabel(label, row=1, col=1)

ylabel(label, row=1, col=1)

192 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

property fig

static timeseries_trace(points, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=- 1,
colorscale='Magma', colorbar_title=None)

Static method for creating a list of 3 Plotly traces of timeseries. See PlotlyGrapher2D.add_timeseries for
the full documentation.

add_timeseries(points, rows_cols=[(1, 1), (2, 1), (3, 1)], size=6.0, color=None, opacity=0.8,
colorbar=True, colorbar_col=- 1, colorscale='Magma', colorbar_title=None)

Add a timeseries plot for each dimension in points vs. time.

If the current PlotlyGrapher2D figure does not have enough rows and columns to accommodate the three
subplots (at coordinates rows_cols), the inner figure will be regenerated with enough rows and columns.

Parameters
points [(M, N >= 4) numpy.ndarray or pept.PointData] The expected data columns are:

[time, x1, y1, z1, etc.]. If a pept.PointData instance (or subclass thereof) is received, the
inner points will be used.

rows_cols [list[tuple[2]]] A list with 3 tuples, each tuple containing the subplot indices
to plot the x, y, and z coordinates (indexed from 1).

size [float, default 6.0] The marker size of the points.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

colorbar_col [int, default -1] The column in points that will be used to color the points.
Only has an effect if colorbar is set to True. The default is -1 (the last column).

colorscale [str, default “Magma”] The Plotly scheme for color-coding the colorbar_col
column in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full
list is given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True
and color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Raises
ValueError If points is not a numpy.ndarray with shape (M, N), where N >= 4.

Notes

If a colorbar is to be used (i.e. colorbar = True and color = None) and there are fewer than 10 unique values
in the colorbar_col column in points, then the points for each unique label will be added as separate traces.

This is helpful for cases such as when plotting points with labelled trajectories, as when there are fewer
than 10 trajectories, the distinct colours automatically used by Plotly when adding multiple traces allow the
points to be better distinguished.

5.3. Manual 193

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Examples

Add an array of 3D points (data columns: [time, x, y, z]) to a PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.array(...) # shape (N, M >= 4)
>>> grapher.add_timeseries(points_raw)
>>> grapher.show()

Add all the points in a PointData instance:

>>> point_data = pept.PointData(...) # Some example data
>>> grapher.add_timeseries(point_data)
>>> grapher.show()

static points_trace(points, size=2.0, color=None, opacity=0.8, colorbar=True, colorbar_col=- 1,
colorscale='Magma', colorbar_title=None)

Static method for creating a Plotly trace of points. See PlotlyGrapher2D.add_points for the full documen-
tation.

add_points(points, row=1, col=1, size=6.0, color=None, opacity=0.8, colorbar=True, colorbar_col=- 1,
colorscale='Magma', colorbar_title=None)

Create and plot a trace for all the points in a numpy array, with possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the points included in the numpy array points and adds
it to the subplot selected by row and col.

The expected data columns are [time, x1, y1, . . .].

Parameters
points [(M, N >= 2) numpy.ndarray] Points to plot. The expected data columns are: [t, x1,

y1, etc.].

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

size [float, default 2.0] The marker size of the points.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”)
or a colorbar list. Overrides colorbar if set. For more information, check the Plotly docu-
mentation. The default is None.

opacity [float, default 0.8] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

colorbar [bool, default True] If set to True, will color-code the data in the points column
colorbar_col. Is overridden by color if set.

colorbar_col [int, default -1] The column in points that will be used to color the points.
Only has an effect if colorbar is set to True. The default is -1 (the last column).

colorscale [str, default “Magma”] The Plotly scheme for color-coding the colorbar_col
column in the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full
list is given at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True
and color is not set.

colorbar_title [str, optional] If set, the colorbar will have this title above it.

Raises

194 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pept Documentation, Release 0.4.1

ValueError If points is not a numpy.ndarray with shape (M, N), where N >= 3.

Examples

Add an array of points (data columns: [time, x, y]) to a PlotlyGrapher2D instance:

>>> grapher = PlotlyGrapher2D()
>>> points_raw = np.random.random((10, 3))
>>> grapher.add_points(points_raw)
>>> grapher.show()

If you have an extremely large number of points in a numpy array, you can plot every 10th point using
slices:

>>> pts = np.array(...) # shape (N, M >= 3), N very large
>>> grapher.add_points(pts[::10])

static lines_trace(lines, width=2.0, color=None, opacity=0.6)
Static method for creating a Plotly trace of lines. See PlotlyGrapher2D.add_lines for the full documenta-
tion.

add_lines(lines, row=1, col=1, width=2.0, color=None, opacity=0.6)
Create and plot a trace for all the lines in a numpy array, with possible color-coding.

Creates a plotly.graph_objects.Scatter object for all the lines included in the numpy array lines and adds it
to the subplot determined by row and col.

It expects LoR-like data, where each line is defined by two points. The expected data columns are [x1, y1,
x2, y2, . . .].

Parameters
lines [(M, N >= 5) numpy.ndarray] The expected data columns are: [time, x1, y1, x2, y2,

etc.].

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

width [float, default 2.0] The width of the lines.

color [str or list-like, optional] Can be a single color (e.g. “black”, “rgb(122, 15, 241)”).

opacity [float, default 0.6] The opacity of the lines, where 0 is transparent and 1 is fully
opaque.

Raises
ValueError If lines is not a numpy.ndarray with shape (M, N), where N >= 5.

5.3. Manual 195

https://docs.python.org/3/library/exceptions.html#ValueError
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Examples

Add an array of lines (data columns: [time, x1, y1, x2, y2]) to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines_raw = np.random.random((100, 5))
>>> grapher.add_lines(lines_raw)
>>> grapher.show()

If you have a very large number of lines in a numpy array, you can plot every 10th point using slices:

>>> lines_raw = np.array(...) # shape (N, M >= 5), N very large
>>> grapher.add_lines(lines_raw[::10])

add_pixels(pixels, row=1, col=1, colorscale='Magma', transpose=True, xgap=0.0, ygap=0.0)
Create and plot a trace with all the pixels in this class, with possible filtering.

Creates a plotly.graph_objects.Heatmap object for the centres of all pixels encapsulated in a pept.Pixels
instance, colour-coding the pixel value.

The condition parameter is a filtering function that should return a boolean mask (i.e. it is the result of a
condition evaluation). For example lambda x: x > 0 selects all pixels that have a value larger than 0.

Parameters
pixels [pept.Pixels] The pixel space, encapsulated in a pept.Pixels instance (or subclass

thereof). Only pept.Pixels are accepted as raw pixels on their own do not contain data about
the spatial coordinates of the pixel box.

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

colorscale [str, default “Magma”] The Plotly scheme for color-coding the pixel values in
the input data. Typical ones include “Cividis”, “Viridis” and “Magma”. A full list is given
at plotly.com/python/builtin-colorscales/. Only has an effect if colorbar = True and color
is not set.

transpose [bool, default True] Transpose the heatmap (i.e. flip it across its diagonal).

Examples

Pixellise an array of lines and add them to a PlotlyGrapher instance:

>>> grapher = PlotlyGrapher2D()
>>> lines = np.array(...) # shape (N, M >= 7)
>>> lines2d = lines[:, [0, 1, 2, 4, 5]] # select x, y of lines
>>> number_of_pixels = [10, 10]
>>> pixels = pept.Pixels.from_lines(lines2d, number_of_pixels)
>>> grapher.add_lines(lines)
>>> grapher.add_pixels(pixels)
>>> grapher.show()

add_trace(trace, row=1, col=1)
Add a precomputed Plotly trace to a given subplot.

The equivalent of the Plotly figure.add_trace method.

Parameters

196 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

pept Documentation, Release 0.4.1

trace [Plotly trace] A precomputed Plotly trace.

row [int, default 1] The row of the subplot to add a trace to.

col [int, default 1] The column of the subplot to add a trace to.

add_traces(traces, row=1, col=1)
Add a list of precomputed Plotly traces to a given subplot.

The equivalent of the Plotly figure.add_traces method.

Parameters
traces [list [Plotly trace]] A list of precomputed Plotly traces

row [int, default 1] The row of the subplot to add the traces to.

col [int, default 1] The column of the subplot to add the traces to.

equalise_axes()
Equalise the axes of all subplots by setting the system limits xlim and ylim to equal values, such that all data
plotted is within the plotted bounds.

equalise_separate()
Equalise the axes of all subplots individually by setting the system limits in each dimension to equal values,
such that all data plotted is within the plotted bounds.

show(equal_axes=True)
Show the Plotly figure, optionally setting equal axes limits.

Note that the figure will be shown on the Plotly-configured renderer (e.g. browser, or PDF). The available
renderers can be found by running the following code:

>>> import plotly.io as pio
>>> pio.renderers

If you want an interactive figure in the browser, run the following:

>>> pio.renderers.default = "browser"

Parameters
equal_axes [bool, default True] Set xlim, ylim to equal ranges such that the axes limits are

equalised. Only has an effect if both xlim and ylim are None. If False, the default Plotly
behaviour is used (i.e. automatically use min, max for each dimension).

to_html(filepath, equal_axes=True, include_plotlyjs=True)
Save the current Plotly figure as a self-contained HTML webpage.

Parameters
filepath [str or writeable] Path or open file descriptor to save the HTML file to.

equal_axes [bool, default True] Set xlim, ylim to equal ranges such that the axes limits are
equalised. Only has an effect if both xlim and ylim are None. If False, the default Plotly
behaviour is used (i.e. automatically use min, max for each dimension).

include_plotlyjs [True or “cdn”, default True] If True, embed the Plotly.JS library in the
HTML file, allowing the graph to be shown offline, but adding 3 MB. If “cdn”, the Plotly.JS
library will be downloaded dynamically.

5.3. Manual 197

https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/trace.html#module-trace
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#True

pept Documentation, Release 0.4.1

Examples

Add 10 random points to a PlotlyGrapher2D instance and save the figure as an HTML webpage:

>>> fig = pept.visualisation.PlotlyGrapher2D()
>>> fig.add_points(np.random.random((10, 3)))
>>> fig.to_html("random_points.html")

pept.utilities

PEPT-oriented utility functions.

The utility functions include low-level optimised Cython functions (e.g. find_cutpoints) that are of common interest
across the pept package, as well as I/O functions, parallel maps and pixel/voxel traversal algorithms.

Even though the functions are grouped in directories (subpackages) and files (modules), unlike the rest of the package,
they are all imported into the pept.utilities root, so that their import paths are not too long.

pept.utilities.find_cutpoints(const double[,
. . .)

Compute the cutpoints from a given array of lines.

pept.utilities.find_minpoints(const double[,
. . .)

Compute the minimum distance points (MDPs) from all
combinations of num_lines lines given in an array of
lines sample_lines.

pept.utilities.group_by_column(data_array, . . .) Group the rows in a 2D data_array based on the unique
values in a given column_to_separate, returning the
groups as a list of numpy arrays.

pept.utilities.number_of_lines(. . .) Return the number of lines (or rows) in a file.
pept.utilities.read_csv(filepath_or_buffer) Read a given number of lines from a file and return a

numpy array of the values.
pept.utilities.read_csv_chunks(. . . [, . . .]) Read chunks of data from a file lazily, returning numpy

arrays of the values.
pept.utilities.parallel_map_file(func, . . .) Utility for parallelising (read CSV chunk -> process

chunk) workflows.
pept.utilities.traverse2d(double[, , . . .) Fast pixel traversal for 2D lines (or LoRs).
pept.utilities.traverse3d(double[, , , . . .) Fast voxel traversal for 3D lines (or LoRs).
pept.utilities.ChunkReader(. . . [, skiprows, . . .]) Class for fast, on-demand reading / parsing and iteration

over chunks of data from CSV files.

pept.utilities.find_cutpoints

pept.utilities.find_cutpoints(const double[:, :] sample_lines, double max_distance, const double[:]
cutoffs, bool append_indices=0)

Compute the cutpoints from a given array of lines.

Function signature:
find_cutpoints(

double[:, :] sample_lines, # LoRs in sample
double max_distance, # Max distance between two LoRs
double[:] cutoffs, # Spatial cutoff for cutpoints
bint append_indices = False # Append LoR indices used

)

198 Chapter 5. Indices and tables

pept Documentation, Release 0.4.1

This is a low-level Cython function that does not do any checks on the input data - it is meant to be used in other
modules / libraries. For a normal user, the pept.tracking.peptml function find_cutpoints and class Cutpoints
are recommended as higher-level APIs. They do check the input data and are easier to use (for example, they
automatically compute the cutoffs).

A cutpoint is the point in 3D space that minimises the distance between any two lines. For any two non-parallel
3D lines, this point corresponds to the midpoint of the unique segment that is perpendicular to both lines.

This function considers every pair of lines in sample_lines and returns all the cutpoints that satisfy the following
conditions:

1. The distance between the two lines is smaller than max_distance.

2. The cutpoints are within the cutoffs.

Parameters
sample_lines [(N, M >= 7) numpy.ndarray] The sample of lines, where each row is [time, x1,

y1, z1, x2, y2, z2], containing two points [x1, y1, z1] and [x2, y2, z2] defining an LoR.

max_distance [float] The maximum distance between two LoRs for their cutpoint to be con-
sidered.

cutoffs [(6,) numpy.ndarray] Only consider the cutpoints that fall within the cutoffs. cutoffs
has the format [min_x, max_x, min_y, max_y, min_z, max_z].

append_indices [bool, optional] If set to True, the indices of the individual LoRs that were used
to compute each cutpoint is also appended to the returned array. Default is False.

Returns
cutpoints [(M, 4) or (M, 6) numpy.ndarray] A numpy array of the calculated weighted cut-

points. If append_indices is False, then the columns are [time, x, y, z]. If append_indices
is True, then the columns are [time, x, y, z, i, j], where i and j are the LoR indices from
sample_lines that were used to compute the cutpoints. The time is the average between the
timestamps of the two LoRs that were used to compute the cutpoint. The first column (for
time) is sorted.

Examples

>>> import numpy as np
>>> from pept.utilities import find_cutpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> cutpoints = find_cutpoints(lines, max_distance, cutoffs)

5.3. Manual 199

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#float
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

pept.utilities.find_minpoints

pept.utilities.find_minpoints(const double[:, :] sample_lines, Py_ssize_t num_lines, double max_distance,
const double[:] cutoffs, bool append_indices=0)

Compute the minimum distance points (MDPs) from all combinations of num_lines lines given in an array of
lines sample_lines.

Function signature:
find_minpoints(

double[:, :] sample_lines, # LoRs in sample
Py_ssize_t num_lines, # Number of LoRs in combinations
double max_distance, # Max distance from MDP to LoRs
double[:] cutoffs, # Spatial cutoff for minpoints
bool append_indices = 0 # Append LoR indices used

)

Given a sample of lines, this functions computes the minimum distance points (MDPs) for every possible com-
bination of num_lines lines. The returned numpy array contains all MDPs that satisfy the following:

1. Are within the cutoffs.

2. Are closer to all the constituent LoRs than max_distance.

Parameters
sample_lines: (M, N) numpy.ndarray A 2D array of lines, where each line is defined by two

points such that every row is formatted as [t, x1, y1, z1, x2, y2, z2, etc.]. It must have at least
2 lines and the combination size num_lines must be smaller or equal to the number of lines.
Put differently: 2 <= num_lines <= len(sample_lines).

num_lines: int The number of lines in each combination of LoRs used to compute the MDP.
This function considers every combination of numlines from the input sample_lines. It must
be smaller or equal to the number of input lines sample_lines.

max_distance: float The maximum allowed distance between an MDP and its constituent lines.
If any distance from the MDP to one of its lines is larger than max_distance, the MDP is
thrown away.

cutoffs: (6,) numpy.ndarray An array of spatial cutoff coordinates with exactly 6 elements as
[x_min, x_max, y_min, y_max, z_min, z_max]. If any MDP lies outside this region, it is
thrown away.

append_indices: bool A boolean specifying whether to include the indices of the lines used
to compute each MDP. If False, the output array will only contain the [time, x, y, z] of the
MDPs. If True, the output array will have extra columns [time, x, y, z, line_idx(1), . . . ,
line_idx(n)] where n = num_lines.

Returns
minpoints: (M, N) numpy.ndarray A 2D array of float`s containing the time and coordinates

of the MDPs [time, x, y, z]. The time is computed as the average of the constituent lines.
If `append_indices is True, then num_lines indices of the constituent lines are appended as
extra columns: [time, x, y, z, line_idx1, line_idx2, ..].

200 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray

pept Documentation, Release 0.4.1

Notes

There must be at least two lines in sample_lines and num_lines must be greater or equal to the number of lines
(i.e. len(sample_lines)). Put another way: 2 <= num_lines <= len(sample_lines).

This is a low-level Cython function that does not do any checks on the input data - it is meant to be used in other
modules / libraries. For a normal user, the pept.tracking.peptml function find_minpoints and class Minpoints
are recommended as higher-level APIs. They do check the input data and are easier to use (for example, they
automatically compute the cutoffs).

Examples

>>> import numpy as np
>>> from pept.utilities import find_minpoints
>>>
>>> lines = np.random.random((500, 7)) * 500
>>> num_lines = 3
>>> max_distance = 0.1
>>> cutoffs = np.array([0, 500, 0, 500, 0, 500], dtype = float)
>>>
>>> minpoints = find_minpoints(lines, num_lines, max_distance, cutoffs)

pept.utilities.group_by_column

pept.utilities.group_by_column(data_array, column_to_separate)
Group the rows in a 2D data_array based on the unique values in a given column_to_separate, returning the
groups as a list of numpy arrays.

Parameters
data_array [(M, N) numpy.ndarray] A generic 2D numpy array-like (will be converted using

numpy.asarray).

column_to_separate [int] The column index in data_array from which the unique values will
be used for grouping.

Returns
groups [list of numpy.ndarray] A list whose elements are 2D numpy arrays - these are

sub-arrays from data_array for which the entries in the column column_to_separate are the
same.

Raises
ValueError If data_array does not have exactly 2 dimensions.

5.3. Manual 201

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/exceptions.html#ValueError

pept Documentation, Release 0.4.1

Examples

Separate a 6x3 numpy array based on the last column:

>>> x = np.array([
>>> [1, 2, 1],
>>> [5, 3, 1],
>>> [1, 1, 2],
>>> [5, 2, 1],
>>> [2, 4, 2]
>>>])
>>> x_sep = pept.utilities.group_by_column(x, -1)
>>> x_sep
>>> [array([[1, 2, 1],
>>> [5, 3, 1],
>>> [5, 2, 1]]),
>>> array([[1, 1, 2],
>>> [2, 4, 2]])]

pept.utilities.number_of_lines

pept.utilities.number_of_lines(filepath_or_buffer)
Return the number of lines (or rows) in a file.

Parameters
filepath_or_buffer [str, path object or file-like object] Path to the file.

Returns
int The number of lines in the file pointed at by filepath_or_buffer.

pept.utilities.read_csv

pept.utilities.read_csv(filepath_or_buffer, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+',
header=None, engine='c', na_filter=False, quoting=3, memory_map=True,
**kwargs)

Read a given number of lines from a file and return a numpy array of the values.

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it reads from a space-separated values file at filepath_or_buffer, optionally skipping skiprows
lines and reading in nrows lines. It returns a numpy.ndarray with float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer [str, path object or file-like object] Any valid string path is acceptable.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs,
a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to
pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects
with a read() method, such as a file handler (e.g. via builtin open function) or StringIO.

202 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv

pept Documentation, Release 0.4.1

skiprows [list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number
of lines to skip (int) at the start of the file.

nrows [int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype [Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep [str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header [int, list of int, “infer”, optional] Row number(s) to use as the column names, and
the start of the data. By default assume there is no header present (i.e. header = None).

engine [{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the
python engine is currently more feature-complete.

na_filter [bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting [int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting
behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map [bool, default True] If a filepath is provided for filepath_or_buffer, map the
file object directly onto memory and access the data directly from there. Using this option
can improve performance because there is no longer any I/O overhead.

kwargs [optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.read_csv_chunks

pept.utilities.read_csv_chunks(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class
'float'>, sep='\\s+', header=None, engine='c', na_filter=False, quoting=3,
memory_map=True, **kwargs)

Read chunks of data from a file lazily, returning numpy arrays of the values.

This function returns a generator - an object that can be iterated over once, creating data on-demand. This means
that chunks of data will be read only when being accessed, making it a more efficient alternative to read_csv for
large files (> 1.000.000 lines).

A more convenient and feature-complete alternative is pept.utilities.ChunkReader which is more reusable and
can access out-of-order chunks using subscript notation (i.e. data[0]).

This is a convenience function that’s simply a proxy to pandas.read_csv, configured with default parameters for
fast reading and parsing of usual PEPT data.

Most importantly, it lazily read chunks of size chunksize from a space-separated values file at filepath_or_buffer,
optionally skipping skiprows lines and reading in nrows lines. It returns numpy.ndarray`s with `float values.

The parameters below are sent to pandas.read_csv with no further parsing. The descriptions below are taken
from the pandas documentation.

Parameters
filepath_or_buffer [str, path object or file-like object] Any valid string path is acceptable.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs,
a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to

5.3. Manual 203

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv

pept Documentation, Release 0.4.1

pass in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects
with a read() method, such as a file handler (e.g. via builtin open function) or StringIO.

chunksize [int] Number of lines read in a chunk of data. Return TextFileReader object for
iteration.

skiprows [list-like, int or callable(), optional] Line numbers to skip (0-indexed) or number
of lines to skip (int) at the start of the file.

nrows [int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype [Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep [str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header [int, list of int, “infer”, optional] Row number(s) to use as the column names, and
the start of the data. By default assume there is no header present (i.e. header = None).

engine [{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the
python engine is currently more feature-complete.

na_filter [bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting [int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field quoting
behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL
(1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map [bool, default True] If a filepath is provided for filepath_or_buffer, map the
file object directly onto memory and access the data directly from there. Using this option
can improve performance because there is no longer any I/O overhead.

kwargs [optional] Extra keyword arguments that will be passed to pandas.read_csv.

pept.utilities.parallel_map_file

pept.utilities.parallel_map_file(func, fname, start, end, chunksize, *args, dtype=<class 'float'>,
processes=None, callback=<function <lambda>>,
error_callback=<function <lambda>>, **kwargs)

Utility for parallelising (read CSV chunk -> process chunk) workflows.

This function reads individual chunks of data from a CSV-formatted file, then asynchronously sends them as
numpy arrays to an arbitrary function func for processing. In effect, it reads a file in one main thread and processes
it in separate threads.

This is especially useful when dealing with very large files (like we do in PEPT. . .) that you’d like to process in
batches, in parallel.

Parameters
func [callable()] The function that will be called with each chunk of data, the chunk number,

the other positional arguments *args and keyword arguments **kwargs: func(data_chunk,
chunk_number, *args, **kwargs). data_chunk is a numpy array returned by numpy.loadtxt
and chunk_number is an int. func must be picklable for sending to other threads.

fname [file, str, or pathlib.Path] The file, filename, or generator that numpy.loadtxt will
be supplied with.

204 Chapter 5. Indices and tables

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path

pept Documentation, Release 0.4.1

start [int] The starting line number that the chunks will be read from.

end [int] The ending line number that the chunks will be read from. This is exclusive.

chunksize [int] The number of lines that will be read for each chunk.

*args [additional positional arguments] Additional positional arguments that will be
supplied to func.

dtype [type] The data type of the numpy array that is returned by numpy.loadtxt. The default
is float.

processes [int] The maximum number of threads that will be used for calling func. If left to
the default None, then the number returned by os.cpu_count() will be used.

callback [callable()] When the result from a func call becomes ready callback is applied to
it, that is unless the call failed, in which case the error_callback is applied instead.

error_callback [callable()] If the target function func fails, then the error_callback is called
with the exception instance.

**kwargs [additional keybord arguments] Additional keyword arguments that will be sup-
plied to func.

Returns
list A Python list of the func call returns. The results are not necessarily in order, though this

can be verified by using the chunk number that is supplied to each call to func. If func does
not return anything, it will simply be a list of None.

Notes

This function uses numpy.loadtxt to read chunks of data and multiprocessing.Pool.apply_async to call func asyn-
chronously.

As the calls to func happen in different threads, all the usual parallel processing issues apply. For example, func
should not save data to the same file, as it will overwrite results from different threads and may become corrupt -
however, there is a workaround for this particular case: because the chunk numbers are guaranteed to be unique,
any data can be saved to a file whose name includes this chunk number, making it unique.

Examples

For a random file-like CSV data object:

>>> import io
>>> flike = io.StringIO("1,2,3\n4,5,6\n7,8,9")
>>> def func(data, chunk_number):
>>> return (data, chunk_number)
>>> results = parallel_map_file(func, flike, 0, 3, 1)
>>> print(results)
>>> [([1, 2, 3], 0), ([4, 5, 6], 1), ([7, 8, 9], 2)]

5.3. Manual 205

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/stdtypes.html#list

pept Documentation, Release 0.4.1

pept.utilities.traverse2d

pept.utilities.traverse2d(double[:, :] pixels, const double[:, :] lines, const double[:] grid_x, const double[:]
grid_y)→ void

Fast pixel traversal for 2D lines (or LoRs).

Function Signature:
traverse2d(

double[:, :] pixels, # Initialised to zero!
double[:, :] lines, # Has exactly 7 columns!
double[:] grid_x, # Has pixels.shape[0] + 1 elements!
double[:] grid_y, # Has pixels.shape[1] + 1 elements!

)

This function computes the number of lines that passes through each pixel, saving the result in pixels. It does so
in an efficient manner, in which for every line, only the pixels that it passes through are traversed.

As it is highly optimised, this function does not perform any checks on the validity of the input data. Please check
the parameters before calling traverse2d, as it WILL segfault on wrong input data. Details are given below, along
with an example call.

Parameters
pixels [numpy.ndarray(dtype = numpy.float64, ndim = 2)] The pixels parameter is a

numpy.ndarray of shape (X, Y) that has been initialised to zeros before the function call.
The values will be modified in-place in the function to reflect the number of lines that pass
through each pixel.

lines [numpy.ndarray(dtype = numpy.float64, ndim = 2)] The lines parameter is a
numpy.ndarray of shape(N, 5), where each row is formatted as [time, x1, y1, x2, y2]. Only
indices 1:5 will be used as the two points P1 = [x1, y1] and P2 = [x2, y2] defining the line
(or LoR).

grid_x [numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_x parameter is a one-
dimensional grid that delimits the pixels in the x-dimension. It must be sorted in ascending
order with equally-spaced numbers and length X + 1 (pixels.shape[0] + 1).

grid_y [numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_y parameter is a one-
dimensional grid that delimits the pixels in the y-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Y + 1 (pixels.shape[1] + 1).

Notes

This function is an adaptation of a widely-used algorithm [1], optimised for PEPT LoRs traversal.

Examples

The input parameters can be easily generated using numpy before calling the function. For example, if a plane
of 300 x 400 is split into 30 x 40 pixels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse2d
>>>
>>> plane = [300, 400]

(continues on next page)

206 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64

pept Documentation, Release 0.4.1

(continued from previous page)

>>> number_of_pixels = [30, 40]
>>> pixels = np.zeros(number_of_pixels)

The grid has one extra element than the number of pixels. For example, 5 pixels between 0 and 5 would be
delimited by the grid [0, 1, 2, 3, 4, 5] which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, plane[0], number_of_pixels[0] + 1)
>>> grid_y = np.linspace(0, plane[1], number_of_pixels[1] + 1)
>>>
>>> random_lines = np.random.random((100, 5)) * 100

Calling traverse2d will modify pixels in-place.

>>> traverse2d(pixels, random_lines, grid_x, grid_y)

pept.utilities.traverse3d

pept.utilities.traverse3d(double[:, :, :] voxels, const double[:, :] lines, const double[:] grid_x, const
double[:] grid_y, const double[:] grid_z)→ void

Fast voxel traversal for 3D lines (or LoRs).

Function Signature:
traverse3d(

long[:, :, :] voxels, # Initialised!
double[:, :] lines, # Has exactly 7 columns!
double[:] grid_x, # Has voxels.shape[0] + 1 elements!
double[:] grid_y, # Has voxels.shape[1] + 1 elements!
double[:] grid_z # Has voxels.shape[2] + 1 elements!

)

This function computes the number of lines that passes through each voxel, saving the result in voxels. It does
so in an efficient manner, in which for every line, only the voxels that is passes through are traversed.

As it is highly optimised, this function does not perform any checks on the validity of the input data. Please check
the parameters before calling traverse3d, as it WILL segfault on wrong input data. Details are given below, along
with an example call.

Parameters
voxels [numpy.ndarray(dtype = numpy.float64, ndim = 3)] The voxels parameter is a

numpy.ndarray of shape (X, Y, Z) that has been initialised to zeros before the function call.
The values will be modified in-place in the function to reflect the number of lines that pass
through each voxel.

lines [numpy.ndarray(dtype = numpy.float64, ndim = 2)] The lines parameter is a
numpy.ndarray of shape(N, 7), where each row is formatted as [time, x1, y1, z1, x2, y2,
z2]. Only indices 1:7 will be used as the two points P1 = [x1, y1, z2] and P2 = [x2, y2, z2]
defining the line (or LoR).

grid_x [numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_x parameter is a one-
dimensional grid that delimits the voxels in the x-dimension. It must be sorted in ascending
order with equally-spaced numbers and length X + 1 (voxels.shape[0] + 1).

5.3. Manual 207

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64

pept Documentation, Release 0.4.1

grid_y [numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_y parameter is a one-
dimensional grid that delimits the voxels in the y-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Y + 1 (voxels.shape[1] + 1).

grid_z [numpy.ndarray(dtype = numpy.float64, ndim = 1)] The grid_z parameter is a one-
dimensional grid that delimits the voxels in the z-dimension. It must be sorted in ascending
order with equally-spaced numbers and length Z + 1 (voxels.shape[2] + 1).

Notes

This function is an adaptation of a widely-used algorithm [1], optimised for PEPT LoRs traversal.

Examples

The input parameters can be easily generated using numpy before calling the function. For example, if a volume
of 300 x 400 x 500 is split into 30 x 40 x 50 voxels, a possible code would be:

>>> import numpy as np
>>> from pept.utilities.traverse import traverse3d
>>>
>>> volume = [300, 400, 500]
>>> number_of_voxels = [30, 40, 50]
>>> voxels = np.zeros(number_of_voxels)

The grid has one extra element than the number of voxels. For example, 5 voxels between 0 and 5 would be
delimited by the grid [0, 1, 2, 3, 4, 5] which has 6 elements (see off-by-one errors - story of my life).

>>> grid_x = np.linspace(0, volume[0], number_of_voxels[0] + 1)
>>> grid_y = np.linspace(0, volume[1], number_of_voxels[1] + 1)
>>> grid_z = np.linspace(0, volume[2], number_of_voxels[2] + 1)
>>>
>>> random_lines = np.random.random((100, 7)) * 300

Calling traverse3d will modify voxels in-place.

>>> traverse3d(voxels, random_lines, grid_x, grid_y, grid_z)

pept.utilities.ChunkReader

class pept.utilities.ChunkReader(filepath_or_buffer, chunksize, skiprows=None, nrows=None,
dtype=<class 'float'>, sep='\\s+', header=None, engine='c',
na_filter=False, quoting=3, memory_map=True, **kwargs)

Bases: object

Class for fast, on-demand reading / parsing and iteration over chunks of data from CSV files.

This is an abstraction above pandas.read_csv for easy and fast iteration over chunks of data from a CSV file. The
chunks can be accessed using normal iteration (for chunk in reader: . . .) and subscripting (reader[0]).

The chunks are read lazily, only upon access. It is therefore a more efficient alternative to read_csv for large files
(> 1.000.000 lines). For convenience, this class configures some default parameters for pandas.read_csv for fast
reading and parsing of usual PEPT data.

208 Chapter 5. Indices and tables

https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://numpy.org/devdocs/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/devdocs/reference/arrays.scalars.html#numpy.float64
https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

Most importantly, it reads chunks containing chunksize lines from a space-separated values file at
filepath_or_buffer, optionally skipping skiprows lines and reading in at most nrows lines. It returns
numpy.ndarray`s with `float values.

Raises
IndexError Upon access to a non-existent chunk using subscript notation (i.e. data[100] when

there are 50 chunks).

See also:

pept.utilities.read_csv Fast CSV file reading into numpy arrays.

pept.LineData Encapsulate LoRs for ease of iteration and plotting.

pept.PointData Encapsulate points for ease of iteration and plotting.

Examples

Say “data.csv” contains 1_000_000 lines of data. Read chunks of 10_000 lines as a time, skipping the first
100_000:

>>> from pept.utilities import ChunkReader
>>> chunks = ChunkReader("data.csv", 10_000, skiprows = 100_000)
>>> len(chunks) # 90 chunks
>>> chunks.file_lines # 1_000_000

Normal iteration:

>>> for chunk in chunks:
>>> ... # neat operations

Access a single chunk using subscripting:

>>> chunks[0] # First chunk
>>> chunks[-1] # Last chunk
>>> chunks[100] # IndexError

Attributes
filepath_or_buffer [str, path object or file-like object] Any valid string path is acceptable.

The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs,
a host is expected. A local file could be file://localhost/path/to/table.csv. If you want to pass
in a path object, pandas accepts any os.PathLike. By file-like object, we refer to objects with
a read() method, such as a file handler (e.g. via builtin open function) or StringIO.

number_of_chunks [int] The number of chunks (also returned when using the len method),
taking into account the lines skipped (skiprows), the number of lines in the file (file_lines)
and the maximum number of lines to be read (nrows).

file_lines [int] The number of lines in the file pointed at by filepath_or_buffer.

chunksize [int] The number of lines in a chunk of data.

skiprows [int] The number of lines to be skipped at the beginning of the file.

nrows [int] The maximum number of lines to be read. Only has an effect if it is less than
file_lines - skiprows. For example, if a file has 10 lines and skiprows = 5 and chunksize = 5,
even if nrows were to be 20, the number_of_chunks should still be 1.

5.3. Manual 209

https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
file://localhost/path/to/table.csv
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

pept Documentation, Release 0.4.1

__init__(filepath_or_buffer, chunksize, skiprows=None, nrows=None, dtype=<class 'float'>, sep='\\s+',
header=None, engine='c', na_filter=False, quoting=3, memory_map=True, **kwargs)

ChunkReader class constructor.

Parameters
filepath_or_buffer [str, path object or file-like object] Any valid string path to a local

file is acceptable. If you want to read in lines from an online location (i.e. using a URL),
you should use pept.utilities.read_csv. If you want to pass in a path object, pandas accepts
any os.PathLike. By file-like object, we refer to objects with a read() method, such as a file
handler (e.g. via builtin open function) or StringIO.

chunksize [int] Number of lines read in a chunk of data.

skiprows [list-like, int or callable(), optional] Line numbers to skip (0-indexed) or num-
ber of lines to skip (int) at the start of the file.

nrows [int, optional] Number of rows of file to read. Useful for reading pieces of large files.

dtype [Type name, default float] Data type for data or columns. E.g. {‘a’: np.float64, ‘b’:
np.int32, ‘c’: ‘Int64’}.

sep [str, default “s+”] Delimiter to use. Separators longer than 1 character and different
from ‘s+’ will be interpreted as regular expressions and will also force the use of the Python
parsing engine.

header [int, list of int, “infer”, optional] Row number(s) to use as the column names,
and the start of the data. By default assume there is no header present (i.e. header = None).

engine [{‘c’, ‘python’}, default “c”] Parser engine to use. The C engine is faster while the
python engine is currently more feature-complete.

na_filter [bool, default True] Detect missing value markers (empty strings and the value of
na_values). In data without any NAs, passing na_filter=False can improve the performance
of reading a large file.

quoting [int or csv.QUOTE_* instance, default csv.QUOTE_NONE] Control field
quoting behavior per csv.QUOTE_* constants. Use one of QUOTE_MINIMAL (0),
QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).

memory_map [bool, default True] If a filepath is provided for filepath_or_buffer, map the
file object directly onto memory and access the data directly from there. Using this option
can improve performance because there is no longer any I/O overhead.

kwargs [optional] Extra keyword arguments that will be passed to pandas.read_csv.

Raises
EOFError [End Of File Error] If skiprows >= number_of_lines.

Methods

__init__(filepath_or_buffer, chunksize[, . . .]) ChunkReader class constructor.

210 Chapter 5. Indices and tables

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#callable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#bltin-boolean-values
https://docs.python.org/3/library/constants.html#True

pept Documentation, Release 0.4.1

Attributes

chunksize

file_lines

nrows

number_of_chunks

skiprows

property number_of_chunks

property file_lines

property chunksize

property skiprows

property nrows

pept.simulation

pept.simulation.Simulator(trajectory, . . . [, . . .]) Simulate PEPT data.

pept.simulation.Simulator

class pept.simulation.Simulator(trajectory, sampling_times, shape_function, separation=712,
decay_energy=0.6335, Zeff=7.22, Aeff=13, x_max=500, y_max=500)

Bases: object

Simulate PEPT data.

__init__(trajectory, sampling_times, shape_function, separation=712, decay_energy=0.6335, Zeff=7.22,
Aeff=13, x_max=500, y_max=500)

Simulator class constructor.

Methods

__init__(trajectory, sampling_times, . . . [, . . .]) Simulator class constructor.
add_noise(noise_ratio)

add_noise_and_spread(noise_ratio[, . . .])

add_spread([max_spread, depth])

change_sampling_times(new_sampling_times)

continues on next page

5.3. Manual 211

https://docs.python.org/3/library/functions.html#object

pept Documentation, Release 0.4.1

Table 64 – continued from previous page
change_shape(new_shape_function)

change_trajectory(new_trajectory)

simulate()

write_csv(fname)

write_noise_csv(fname)

simulate()

add_noise(noise_ratio)

add_spread(max_spread=4, depth=16)

add_noise_and_spread(noise_ratio, max_spread=4, depth=16)

change_trajectory(new_trajectory)

change_sampling_times(new_sampling_times)

change_shape(new_shape_function)

write_csv(fname)

write_noise_csv(fname)

5.4 Contributing

The pept library is not a one-man project; it is being built, improved and extended continuously (directly or indirectly)
by an international team of researchers of diverse backgrounds - including programmers, mathematicians and chemical
/ mechanical / nuclear engineers. Want to contribute and become a PEPTspert yourself? Great, join the team!

There are multiple ways to help:

• Open an issue mentioning any improvement you think pept could benefit from.

• Write a tutorial or share scripts you’ve developed that we can add to the pept documentation to help other people
in the future.

• Share your PEPT-related algorithms - tracking, post-processing, visualisation, anything really! - so everybody
can benefit from them.

Want to be a superhero and contribute code directly to the library itself? Grand - fork the project, add your code and
submit a pull request (if that sounds like gibberish but you’re an eager programmer, check this article). We are more

212 Chapter 5. Indices and tables

https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/proposing-changes-to-your-work-with-pull-requests

pept Documentation, Release 0.4.1

than happy to work with you on integrating your code into the library and, if helpful, we can schedule a screen-to-screen
meeting for a more in-depth discussion about the pept package architecture.

Naturally, anything you contribute to the library will respect your authorship - protected by the strong GPL v3.0 open-
source license (see the “Licensing” section below). If you include published work, please add a pointer to your publi-
cation in the code documentation.

5.4.1 Licensing

The pept package is GPL v3.0 licensed. In non-lawyer terms, the key points of this license are:

• You can view, use, copy and modify this code _freely_.

• Your modifications must _also_ be licensed with GPL v3.0 or later.

• If you share your modifications with someone, you have to include the source code as well.

Essentially do whatever you want with the code, but don’t try selling it saying it’s yours :). This is a community-driven
project building upon many other wonderful open-source projects (NumPy, Plotly, even Python itself!) without which
pept simply would not have been possible. GPL v3.0 is indeed a very strong copyleft license; it was deliberately chosen
to maintain the openness and transparency of great software and progress, and respect the researchers pushing PEPT
forward. Frankly, open collaboration is way more efficient than closed, for-profit competition.

5.5 Citing

If you used this codebase or any software making use of it in a scientific publication, we ask you to cite the following
paper:

Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of
Scientific Instruments. 2020 Jan 1;91(1):013329. https://doi.org/10.1063/1.5129251

Because pept is a project bringing together the expertise of many people, it hosts multiple algorithms that were de-
veloped and published in other papers. Please check the documentation of the pept algorithms you are using in your
research and cite the original papers mentioned accordingly.

5.5.1 References

Papers presenting PEPT algorithms included in this library:1,2,3.

Pages

• genindex

• modindex

• search

1 Parker DJ, Broadbent CJ, Fowles P, Hawkesworth MR, McNeil P. Positron emission particle tracking-a technique for studying flow within
engineering equipment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment. 1993 Mar 10;326(3):592-607.

2 Nicuşan AL, Windows-Yule CR. Positron emission particle tracking using machine learning. Review of Scientific Instruments. 2020 Jan
1;91(1):013329.

3 Wiggins C, Santos R, Ruggles A. A feature point identification method for positron emission particle tracking with multiple tracers. Nuclear
Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2017 Jan 21;843:22-8.

5.5. Citing 213

https://choosealicense.com/licenses/gpl-3.0/
https://doi.org/10.1063/1.5129251

pept Documentation, Release 0.4.1

214 Chapter 5. Indices and tables

BIBLIOGRAPHY

[1] Guida A. Positron emission particle tracking applied to solid-liquid mixing in mechanically agitated vessels (Doc-
toral dissertation, University of Birmingham).

[1] Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing. InEurographics 1987 Aug 24 (Vol. 87, No.
3, pp. 3-10).

[1] Amanatides J, Woo A. A fast voxel traversal algorithm for ray tracing. InEurographics 1987 Aug 24 (Vol. 87, No.
3, pp. 3-10)..

215

pept Documentation, Release 0.4.1

216 Bibliography

PYTHON MODULE INDEX

p
pept.plots, 180
pept.processing, 177
pept.scanners, 131
pept.simulation, 211
pept.tracking, 139
pept.utilities, 198

217

pept Documentation, Release 0.4.1

218 Python Module Index

INDEX

Symbols
__init__() (pept.LineData method), 23
__init__() (pept.Pipeline method), 115
__init__() (pept.Pixels method), 36
__init__() (pept.PointData method), 30
__init__() (pept.TimeWindow method), 118
__init__() (pept.Voxels method), 75
__init__() (pept.base.Filter method), 124
__init__() (pept.base.IterableSamples method), 120
__init__() (pept.base.LineDataFilter method), 128
__init__() (pept.base.PEPTObject method), 119
__init__() (pept.base.PointDataFilter method), 127
__init__() (pept.base.Reducer method), 125
__init__() (pept.base.Transformer method), 123
__init__() (pept.base.VoxelsFilter method), 130
__init__() (pept.plots.PlotlyGrapher method), 181
__init__() (pept.plots.PlotlyGrapher2D method), 191
__init__() (pept.scanners.ADACGeometricEfficiency

method), 137
__init__() (pept.simulation.Simulator method), 211
__init__() (pept.tracking.BirminghamMethod

method), 158
__init__() (pept.tracking.Centroids method), 145
__init__() (pept.tracking.Condition method), 148
__init__() (pept.tracking.Cutpoints method), 161
__init__() (pept.tracking.FPI method), 170
__init__() (pept.tracking.HDBSCAN method), 167
__init__() (pept.tracking.Interpolate method), 155
__init__() (pept.tracking.LinesCentroids method), 146
__init__() (pept.tracking.Minpoints method), 164
__init__() (pept.tracking.Remove method), 151
__init__() (pept.tracking.Segregate method), 173
__init__() (pept.tracking.SplitAll method), 143
__init__() (pept.tracking.SplitLabels method), 142
__init__() (pept.tracking.Stack method), 140
__init__() (pept.tracking.Velocity method), 175
__init__() (pept.tracking.Voxelize method), 153
__init__() (pept.utilities.ChunkReader method), 210

A
adac_forte() (in module pept.scanners), 132

ADACGeometricEfficiency (class in pept.scanners),
135

add_lines() (pept.Pixels method), 41
add_lines() (pept.plots.PlotlyGrapher method), 185
add_lines() (pept.plots.PlotlyGrapher2D method), 195
add_lines() (pept.Voxels method), 80
add_noise() (pept.simulation.Simulator method), 212
add_noise_and_spread() (pept.simulation.Simulator

method), 212
add_pixels() (pept.plots.PlotlyGrapher method), 186
add_pixels() (pept.plots.PlotlyGrapher2D method),

196
add_points() (pept.plots.PlotlyGrapher method), 183
add_points() (pept.plots.PlotlyGrapher2D method),

194
add_spread() (pept.simulation.Simulator method), 212
add_timeseries() (pept.plots.PlotlyGrapher2D

method), 193
add_trace() (pept.plots.PlotlyGrapher method), 188
add_trace() (pept.plots.PlotlyGrapher2D method), 196
add_traces() (pept.plots.PlotlyGrapher method), 188
add_traces() (pept.plots.PlotlyGrapher2D method),

197
add_voxels() (pept.plots.PlotlyGrapher method), 187
all() (pept.Pixels method), 43
all() (pept.Voxels method), 85
any() (pept.Pixels method), 43
any() (pept.Voxels method), 85
append_indices (pept.tracking.Cutpoints property),

163
append_indices (pept.tracking.Minpoints property),

167
argmax() (pept.Pixels method), 44
argmax() (pept.Voxels method), 85
argmin() (pept.Pixels method), 44
argmin() (pept.Voxels method), 85
argpartition() (pept.Pixels method), 44
argpartition() (pept.Voxels method), 85
argsort() (pept.Pixels method), 44
argsort() (pept.Voxels method), 85
astype() (pept.Pixels method), 44
astype() (pept.Voxels method), 86

219

pept Documentation, Release 0.4.1

attrs (pept.base.IterableSamples property), 121
attrs (pept.LineData property), 25
attrs (pept.PointData property), 32
attrs (pept.Voxels property), 78

B
base (pept.Pixels attribute), 45
base (pept.Voxels attribute), 87
BirminghamMethod (class in pept.tracking), 157
byteswap() (pept.Pixels method), 45
byteswap() (pept.Voxels method), 87

C
centroid() (pept.tracking.LinesCentroids static

method), 147
Centroids (class in pept.tracking), 145
change_sampling_times() (pept.simulation.Simulator

method), 212
change_shape() (pept.simulation.Simulator method),

212
change_trajectory() (pept.simulation.Simulator

method), 212
choose() (pept.Pixels method), 46
choose() (pept.Voxels method), 88
ChunkReader (class in pept.utilities), 208
chunksize (pept.utilities.ChunkReader property), 211
circles2d() (in module pept.processing), 177
clip() (pept.Pixels method), 46
clip() (pept.Voxels method), 88
columns (pept.base.IterableSamples property), 121
columns (pept.LineData property), 25
columns (pept.PointData property), 32
columns (pept.tracking.Remove property), 151
compress() (pept.Pixels method), 47
compress() (pept.Voxels method), 88
Condition (class in pept.tracking), 148
conditions (pept.tracking.Condition property), 149
conj() (pept.Pixels method), 47
conj() (pept.Voxels method), 88
conjugate() (pept.Pixels method), 47
conjugate() (pept.Voxels method), 88
copy() (pept.base.Filter method), 124
copy() (pept.base.IterableSamples method), 122
copy() (pept.base.LineDataFilter method), 129
copy() (pept.base.PEPTObject method), 119
copy() (pept.base.PointDataFilter method), 127
copy() (pept.base.Reducer method), 126
copy() (pept.base.Transformer method), 123
copy() (pept.base.VoxelsFilter method), 130
copy() (pept.LineData method), 25
copy() (pept.Pipeline method), 117
copy() (pept.Pixels method), 47
copy() (pept.plots.PlotlyGrapher method), 188
copy() (pept.PointData method), 32

copy() (pept.scanners.ADACGeometricEfficiency
method), 137

copy() (pept.tracking.BirminghamMethod method), 159
copy() (pept.tracking.Centroids method), 145
copy() (pept.tracking.Condition method), 149
copy() (pept.tracking.Cutpoints method), 162
copy() (pept.tracking.FPI method), 171
copy() (pept.tracking.HDBSCAN method), 167
copy() (pept.tracking.Interpolate method), 156
copy() (pept.tracking.LinesCentroids method), 147
copy() (pept.tracking.Minpoints method), 166
copy() (pept.tracking.Remove method), 151
copy() (pept.tracking.Segregate method), 174
copy() (pept.tracking.SplitAll method), 143
copy() (pept.tracking.SplitLabels method), 142
copy() (pept.tracking.Stack method), 140
copy() (pept.tracking.Velocity method), 175
copy() (pept.tracking.Voxelize method), 154
copy() (pept.Voxels method), 89
create_figure() (pept.plots.PlotlyGrapher method),

183
create_figure() (pept.plots.PlotlyGrapher2D

method), 192
ctypes (pept.Pixels attribute), 48
ctypes (pept.Voxels attribute), 89
cube_trace() (pept.Voxels method), 81
cubes_traces() (pept.Voxels method), 82
cumprod() (pept.Pixels method), 49
cumprod() (pept.Voxels method), 90
cumsum() (pept.Pixels method), 50
cumsum() (pept.Voxels method), 90
cutoffs (pept.tracking.Cutpoints property), 163
cutoffs (pept.tracking.Minpoints property), 167
Cutpoints (class in pept.tracking), 160

D
data (pept.base.IterableSamples property), 121
data (pept.LineData property), 25
data (pept.Pixels attribute), 50
data (pept.PointData property), 32
data (pept.Voxels attribute), 90
diagonal() (pept.Pixels method), 50
diagonal() (pept.Voxels method), 90
distance_matrix() (pept.tracking.LinesCentroids

static method), 147
dot() (pept.Pixels method), 50
dot() (pept.Voxels method), 91
dtype (pept.Pixels attribute), 50
dtype (pept.Voxels attribute), 91
dump() (pept.Pixels method), 51
dump() (pept.Voxels method), 92
dumps() (pept.Pixels method), 51
dumps() (pept.Voxels method), 92

220 Index

pept Documentation, Release 0.4.1

E
eg() (pept.scanners.ADACGeometricEfficiency method),

137
empty() (pept.Pixels static method), 40
empty() (pept.Voxels static method), 79
equalise_axes() (pept.plots.PlotlyGrapher method),

188
equalise_axes() (pept.plots.PlotlyGrapher2D

method), 197
equalise_separate() (pept.plots.PlotlyGrapher2D

method), 197
extra_attrs() (pept.base.IterableSamples method),

121
extra_attrs() (pept.LineData method), 25
extra_attrs() (pept.PointData method), 32

F
fig (pept.plots.PlotlyGrapher property), 183
fig (pept.plots.PlotlyGrapher2D property), 192
file_lines (pept.utilities.ChunkReader property), 211
fill() (pept.Pixels method), 51
fill() (pept.Voxels method), 92
Filter (class in pept.base), 124
filters (pept.Pipeline property), 116
find_cutpoints() (in module pept.utilities), 198
find_minpoints() (in module pept.utilities), 200
fit() (pept.base.Filter method), 124
fit() (pept.base.LineDataFilter method), 129
fit() (pept.base.PointDataFilter method), 127
fit() (pept.base.Reducer method), 126
fit() (pept.base.VoxelsFilter method), 130
fit() (pept.Pipeline method), 116
fit() (pept.tracking.BirminghamMethod method), 159
fit() (pept.tracking.Centroids method), 145
fit() (pept.tracking.Condition method), 149
fit() (pept.tracking.Cutpoints method), 162
fit() (pept.tracking.FPI method), 171
fit() (pept.tracking.HDBSCAN method), 168
fit() (pept.tracking.Interpolate method), 156
fit() (pept.tracking.LinesCentroids method), 147
fit() (pept.tracking.Minpoints method), 166
fit() (pept.tracking.Remove method), 151
fit() (pept.tracking.Segregate method), 174
fit() (pept.tracking.SplitAll method), 144
fit() (pept.tracking.SplitLabels method), 142
fit() (pept.tracking.Stack method), 140
fit() (pept.tracking.Velocity method), 176
fit() (pept.tracking.Voxelize method), 154
fit_sample() (pept.base.Filter method), 124
fit_sample() (pept.base.LineDataFilter method), 129
fit_sample() (pept.base.PointDataFilter method), 127
fit_sample() (pept.base.VoxelsFilter method), 130
fit_sample() (pept.Pipeline method), 116

fit_sample() (pept.tracking.BirminghamMethod
method), 158

fit_sample() (pept.tracking.Centroids method), 145
fit_sample() (pept.tracking.Condition method), 149
fit_sample() (pept.tracking.Cutpoints method), 163
fit_sample() (pept.tracking.FPI method), 170
fit_sample() (pept.tracking.HDBSCAN method), 168
fit_sample() (pept.tracking.Interpolate method), 155
fit_sample() (pept.tracking.LinesCentroids method),

147
fit_sample() (pept.tracking.Minpoints method), 167
fit_sample() (pept.tracking.Remove method), 151
fit_sample() (pept.tracking.SplitLabels method), 142
fit_sample() (pept.tracking.Velocity method), 175
fit_sample() (pept.tracking.Voxelize method), 154
flags (pept.Pixels attribute), 51
flags (pept.Voxels attribute), 92
flat (pept.Pixels attribute), 52
flat (pept.Voxels attribute), 93
flatten() (pept.Pixels method), 53
flatten() (pept.Voxels method), 94
FPI (class in pept.tracking), 169
from_lines() (pept.Pixels static method), 39
from_lines() (pept.Voxels static method), 78

G
get_cutoff() (pept.Pixels static method), 40
get_cutoff() (pept.Voxels static method), 79
getfield() (pept.Pixels method), 54
getfield() (pept.Voxels method), 95
group_by_column() (in module pept.utilities), 201

H
HDBSCAN (class in pept.tracking), 167
heatmap_trace() (pept.Pixels method), 42
heatmap_trace() (pept.Voxels method), 83
hidden_attrs() (pept.base.IterableSamples method),

121
hidden_attrs() (pept.LineData method), 25
hidden_attrs() (pept.PointData method), 32

I
imag (pept.Pixels attribute), 54
imag (pept.Voxels attribute), 95
Interpolate (class in pept.tracking), 155
item() (pept.Pixels method), 54
item() (pept.Voxels method), 95
itemset() (pept.Pixels method), 55
itemset() (pept.Voxels method), 96
itemsize (pept.Pixels attribute), 56
itemsize (pept.Voxels attribute), 97
IterableSamples (class in pept.base), 120

Index 221

pept Documentation, Release 0.4.1

L
LineData (class in pept), 19
LineDataFilter (class in pept.base), 128
lines (pept.LineData property), 24
lines_trace() (pept.plots.PlotlyGrapher static

method), 184
lines_trace() (pept.plots.PlotlyGrapher2D static

method), 195
LinesCentroids (class in pept.tracking), 146
load() (in module pept), 18
load() (pept.base.Filter static method), 124
load() (pept.base.IterableSamples static method), 122
load() (pept.base.LineDataFilter static method), 129
load() (pept.base.PEPTObject static method), 119
load() (pept.base.PointDataFilter static method), 127
load() (pept.base.Reducer static method), 126
load() (pept.base.Transformer static method), 123
load() (pept.base.VoxelsFilter static method), 130
load() (pept.LineData static method), 25
load() (pept.Pipeline static method), 117
load() (pept.Pixels static method), 40
load() (pept.plots.PlotlyGrapher static method), 188
load() (pept.PointData static method), 32
load() (pept.scanners.ADACGeometricEfficiency static

method), 137
load() (pept.tracking.BirminghamMethod static

method), 159
load() (pept.tracking.Centroids static method), 145
load() (pept.tracking.Condition static method), 149
load() (pept.tracking.Cutpoints static method), 162
load() (pept.tracking.FPI static method), 171
load() (pept.tracking.HDBSCAN static method), 168
load() (pept.tracking.Interpolate static method), 156
load() (pept.tracking.LinesCentroids static method), 147
load() (pept.tracking.Minpoints static method), 166
load() (pept.tracking.Remove static method), 151
load() (pept.tracking.Segregate static method), 174
load() (pept.tracking.SplitAll static method), 144
load() (pept.tracking.SplitLabels static method), 142
load() (pept.tracking.Stack static method), 140
load() (pept.tracking.Velocity static method), 176
load() (pept.tracking.Voxelize static method), 154
load() (pept.Voxels static method), 80

M
max() (pept.Pixels method), 56
max() (pept.Voxels method), 97
max_distance (pept.tracking.Cutpoints property), 162
max_distance (pept.tracking.Minpoints property), 167
mean() (pept.Pixels method), 56
mean() (pept.Voxels method), 97
min() (pept.Pixels method), 56
min() (pept.Voxels method), 97
Minpoints (class in pept.tracking), 163

modular_camera() (in module pept.scanners), 138
module

pept.plots, 180
pept.processing, 177
pept.scanners, 131
pept.simulation, 211
pept.tracking, 139
pept.utilities, 198

N
nbytes (pept.Pixels attribute), 57
nbytes (pept.Voxels attribute), 98
ndim (pept.Pixels attribute), 57
ndim (pept.Voxels attribute), 98
newbyteorder() (pept.Pixels method), 57
newbyteorder() (pept.Voxels method), 98
nonzero() (pept.Pixels method), 58
nonzero() (pept.Voxels method), 99
nrows (pept.utilities.ChunkReader property), 211
num_lines (pept.tracking.Minpoints property), 166
number_of_chunks (pept.utilities.ChunkReader prop-

erty), 211
number_of_lines() (in module pept.utilities), 202
number_of_pixels (pept.Pixels property), 39
number_of_voxels (pept.tracking.Voxelize property),

154
number_of_voxels (pept.Voxels property), 78

O
occupancy2d() (in module pept.processing), 178
overlap (pept.base.IterableSamples property), 121
overlap (pept.LineData property), 26
overlap (pept.PointData property), 33

P
parallel_map_file() (in module pept.utilities), 204
parallel_screens() (in module pept.scanners), 133
partition() (pept.Pixels method), 58
partition() (pept.Voxels method), 99
pept.plots

module, 180
pept.processing

module, 177
pept.scanners

module, 131
pept.simulation

module, 211
pept.tracking

module, 139
pept.utilities

module, 198
PEPTObject (class in pept.base), 119
Pipeline (class in pept), 114
pixel_grids (pept.Pixels property), 39

222 Index

pept Documentation, Release 0.4.1

pixel_size (pept.Pixels property), 39
Pixels (class in pept), 34
pixels (pept.Pixels property), 39
pixels_trace() (pept.Pixels method), 41
plot() (pept.LineData method), 24
plot() (pept.Pixels method), 42
plot() (pept.PointData method), 31
plot() (pept.Voxels method), 80
PlotlyGrapher (class in pept.plots), 180
PlotlyGrapher2D (class in pept.plots), 190
PointData (class in pept), 26
PointDataFilter (class in pept.base), 127
points (pept.PointData property), 31
points_trace() (pept.plots.PlotlyGrapher static

method), 183
points_trace() (pept.plots.PlotlyGrapher2D static

method), 194
predict() (pept.tracking.LinesCentroids method), 147
prod() (pept.Pixels method), 59
prod() (pept.Voxels method), 100
ptp() (pept.Pixels method), 59
ptp() (pept.Voxels method), 100
put() (pept.Pixels method), 59
put() (pept.Voxels method), 100

R
ravel() (pept.Pixels method), 59
ravel() (pept.Voxels method), 100
read_csv() (in module pept), 17
read_csv() (in module pept.utilities), 202
read_csv_chunks() (in module pept.utilities), 203
real (pept.Pixels attribute), 59
real (pept.Voxels attribute), 100
Reducer (class in pept.base), 125
reducers (pept.Pipeline property), 116
Remove (class in pept.tracking), 150
repeat() (pept.Pixels method), 60
repeat() (pept.Voxels method), 101
reshape() (pept.Pixels method), 60
reshape() (pept.Voxels method), 101
resize() (pept.Pixels method), 60
resize() (pept.Voxels method), 101
round() (pept.Pixels method), 61
round() (pept.Voxels method), 102

S
sample_size (pept.base.IterableSamples property), 121
sample_size (pept.LineData property), 26
sample_size (pept.PointData property), 33
samples_indices (pept.base.IterableSamples prop-

erty), 121
samples_indices (pept.LineData property), 26
samples_indices (pept.PointData property), 33
save() (in module pept), 18

save() (pept.base.Filter method), 125
save() (pept.base.IterableSamples method), 122
save() (pept.base.LineDataFilter method), 129
save() (pept.base.PEPTObject method), 119
save() (pept.base.PointDataFilter method), 128
save() (pept.base.Reducer method), 126
save() (pept.base.Transformer method), 123
save() (pept.base.VoxelsFilter method), 131
save() (pept.LineData method), 26
save() (pept.Pipeline method), 117
save() (pept.Pixels method), 40
save() (pept.plots.PlotlyGrapher method), 189
save() (pept.PointData method), 33
save() (pept.scanners.ADACGeometricEfficiency

method), 137
save() (pept.tracking.BirminghamMethod method), 159
save() (pept.tracking.Centroids method), 146
save() (pept.tracking.Condition method), 150
save() (pept.tracking.Cutpoints method), 162
save() (pept.tracking.FPI method), 171
save() (pept.tracking.HDBSCAN method), 168
save() (pept.tracking.Interpolate method), 156
save() (pept.tracking.LinesCentroids method), 148
save() (pept.tracking.Minpoints method), 166
save() (pept.tracking.Remove method), 152
save() (pept.tracking.Segregate method), 174
save() (pept.tracking.SplitAll method), 144
save() (pept.tracking.SplitLabels method), 142
save() (pept.tracking.Stack method), 141
save() (pept.tracking.Velocity method), 176
save() (pept.tracking.Voxelize method), 154
save() (pept.Voxels method), 79
searchsorted() (pept.Pixels method), 62
searchsorted() (pept.Voxels method), 103
Segregate (class in pept.tracking), 172
set_lims() (pept.tracking.Voxelize method), 154
setfield() (pept.Pixels method), 62
setfield() (pept.Voxels method), 103
setflags() (pept.Pixels method), 62
setflags() (pept.Voxels method), 103
shape (pept.Pixels attribute), 64
shape (pept.Voxels attribute), 105
show() (pept.plots.PlotlyGrapher method), 189
show() (pept.plots.PlotlyGrapher2D method), 197
simulate() (pept.simulation.Simulator method), 212
Simulator (class in pept.simulation), 211
size (pept.Pixels attribute), 64
size (pept.Voxels attribute), 105
skiprows (pept.utilities.ChunkReader property), 211
sort() (pept.Pixels method), 65
sort() (pept.Voxels method), 106
SplitAll (class in pept.tracking), 143
SplitLabels (class in pept.tracking), 141
squeeze() (pept.Pixels method), 66

Index 223

pept Documentation, Release 0.4.1

squeeze() (pept.Voxels method), 107
Stack (class in pept.tracking), 140
std() (pept.Pixels method), 66
std() (pept.Voxels method), 107
steps() (pept.Pipeline method), 117
strides (pept.Pixels attribute), 66
strides (pept.Voxels attribute), 107
sum() (pept.Pixels method), 67
sum() (pept.Voxels method), 108
swapaxes() (pept.Pixels method), 67
swapaxes() (pept.Voxels method), 108

T
T (pept.Pixels attribute), 43
T (pept.Voxels attribute), 84
take() (pept.Pixels method), 68
take() (pept.Voxels method), 109
timeseries_trace() (pept.plots.PlotlyGrapher2D

static method), 193
TimeWindow (class in pept), 118
to_csv() (pept.LineData method), 24
to_csv() (pept.PointData method), 31
to_html() (pept.plots.PlotlyGrapher method), 189
to_html() (pept.plots.PlotlyGrapher2D method), 197
tobytes() (pept.Pixels method), 68
tobytes() (pept.Voxels method), 109
tofile() (pept.Pixels method), 68
tofile() (pept.Voxels method), 109
tolist() (pept.Pixels method), 69
tolist() (pept.Voxels method), 110
tostring() (pept.Pixels method), 70
tostring() (pept.Voxels method), 111
trace() (pept.Pixels method), 70
trace() (pept.Voxels method), 111
Transformer (class in pept.base), 123
transformers (pept.Pipeline property), 116
transpose() (pept.Pixels method), 70
transpose() (pept.Voxels method), 111
traverse2d() (in module pept.utilities), 206
traverse3d() (in module pept.utilities), 207

V
var() (pept.Pixels method), 71
var() (pept.Voxels method), 112
Velocity (class in pept.tracking), 175
view() (pept.Pixels method), 71
view() (pept.Voxels method), 112
voxel_grids (pept.Voxels property), 78
voxel_size (pept.Voxels property), 78
Voxelize (class in pept.tracking), 152
Voxels (class in pept), 73
voxels (pept.Voxels property), 78
voxels_trace() (pept.Voxels method), 82
VoxelsFilter (class in pept.base), 130

W
window (pept.TimeWindow attribute), 118
write_csv() (pept.simulation.Simulator method), 212
write_noise_csv() (pept.simulation.Simulator

method), 212

X
xlabel() (pept.plots.PlotlyGrapher method), 183
xlabel() (pept.plots.PlotlyGrapher2D method), 192
xlim (pept.Pixels property), 39
xlim (pept.plots.PlotlyGrapher property), 183
xlim (pept.plots.PlotlyGrapher2D property), 192
xlim (pept.tracking.Voxelize property), 154
xlim (pept.Voxels property), 78

Y
ylabel() (pept.plots.PlotlyGrapher method), 183
ylabel() (pept.plots.PlotlyGrapher2D method), 192
ylim (pept.Pixels property), 39
ylim (pept.plots.PlotlyGrapher property), 183
ylim (pept.plots.PlotlyGrapher2D property), 192
ylim (pept.tracking.Voxelize property), 154
ylim (pept.Voxels property), 78

Z
zlabel() (pept.plots.PlotlyGrapher method), 183
zlim (pept.plots.PlotlyGrapher property), 183
zlim (pept.tracking.Voxelize property), 154
zlim (pept.Voxels property), 78

224 Index

	Positron Emission Particle Tracking
	Tutorials and Documentation
	Performance
	Copyright
	Indices and tables
	Getting Started
	Prerequisites
	Installation

	Tutorials
	Saving / Loading Data
	Plotting
	Interactive 3D Plots

	Initialising PEPT Scanner Data
	ADAC Forte
	Parallel Screens
	Modular Camera

	PEPT-ML
	PEPT-ML one pass of clustering recipe
	PEPT-ML second pass of clustering recipe
	PEPT-ML complete recipe

	The Birmingham Method
	Recipe with Trajectory Separation

	Manual
	Base Functions
	pept.read_csv
	pept.load
	pept.save

	Base Classes
	pept.LineData
	pept.PointData
	pept.Pixels
	pept.Voxels
	pept.Pipeline

	Auxilliaries
	pept.TimeWindow
	Base / Abstract Classes (pept.base)
	pept.base.PEPTObject
	pept.base.IterableSamples
	pept.base.Transformer
	pept.base.Filter
	pept.base.Reducer
	pept.base.PointDataFilter
	pept.base.LineDataFilter
	pept.base.VoxelsFilter

	Initialising Scanner Data (pept.scanners)
	pept.scanners.adac_forte
	pept.scanners.parallel_screens
	pept.scanners.ADACGeometricEfficiency
	pept.scanners.modular_camera

	Tracking Algorithms (pept.tracking)
	General-Purpose Transformers
	pept.tracking.Stack
	pept.tracking.SplitLabels
	pept.tracking.SplitAll
	pept.tracking.Centroids
	pept.tracking.LinesCentroids
	pept.tracking.Condition
	pept.tracking.Remove

	Space Transformers
	pept.tracking.Voxelize
	pept.tracking.Interpolate

	Tracer Locating Algorithms
	pept.tracking.BirminghamMethod
	pept.tracking.Cutpoints
	pept.tracking.Minpoints
	pept.tracking.HDBSCAN
	pept.tracking.FPI

	Trajectory Separation Algorithms
	pept.tracking.Segregate

	Post Processing Algorithms
	pept.tracking.Velocity

	Post Processing (pept.processing)
	pept.processing.circles2d
	pept.processing.occupancy2d

	Visualisation (pept.plots)
	pept.plots.PlotlyGrapher
	pept.plots.PlotlyGrapher2D

	pept.utilities
	pept.utilities.find_cutpoints
	pept.utilities.find_minpoints
	pept.utilities.group_by_column
	pept.utilities.number_of_lines
	pept.utilities.read_csv
	pept.utilities.read_csv_chunks
	pept.utilities.parallel_map_file
	pept.utilities.traverse2d
	pept.utilities.traverse3d
	pept.utilities.ChunkReader

	pept.simulation
	pept.simulation.Simulator

	Contributing
	Licensing

	Citing
	References

	Bibliography
	Python Module Index
	Index

